Examples with solutions for Power of a Power: Calculating powers with negative exponents

Exercise #1

Insert the corresponding expression:

((8×6)7)8= \left(\left(8\times6\right)^{-7}\right)^{-8}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll apply the power of a power rule for exponents. The problem is to simplify the expression ((8×6)7)8\left(\left(8\times6\right)^{-7}\right)^{-8}.

  • Step 1: Understand the Power of a Power Rule

The power of a power rule states that (am)n=am×n(a^m)^n = a^{m \times n}.

  • Step 2: Apply the Rule

Here, the base of the entire expression is 8×68 \times 6, the first exponent is 7-7, and the second exponent is 8-8. According to the rule, we multiply the exponents:

(8×6)7×8 (8 \times 6)^{-7 \times -8}

  • Step 3: Simplify the Exponent Calculation

Calculate the multiplication of the exponents:

7×8=56-7 \times -8 = 56

This results in the expression:

(8×6)56(8 \times 6)^{56}

Considering the given choices, carefully cross-check against our simplified expression:

  • Choice 1: (8×6)78 \left(8\times6\right)^{-7-8} is incorrect - it uses addition instead of multiplication.

  • Choice 2: (8×6)87 \left(8\times6\right)^{\frac{-8}{-7}} is incorrect - it uses division instead.

  • Choice 3: (8×6)7+8 \left(8\times6\right)^{-7+8} is incorrect - it uses addition as well.

  • Choice 4: (8×6)7×8 \left(8\times6\right)^{-7\times-8} is our correct transformation before final simplification.

After calculating, the expression (8×6)7×8=(8×6)56\left(8\times6\right)^{-7\times-8} = (8 \times 6)^{56}. The corresponding expression reflects Choice 4 before final simplification.

Answer

(8×6)7×8 \left(8\times6\right)^{-7\times-8}

Exercise #2

Insert the corresponding expression:

((2×4)2)4= \left(\left(2\times4\right)^{-2}\right)^4=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the expression given and simplify the base.
  • Step 2: Apply the Power of a Power Rule for exponents.
  • Step 3: Match the result with the provided answer choices.

Let's work through each step:

Step 1: The problem gives us the expression ((2×4)2)4\left(\left(2\times4\right)^{-2}\right)^4. First, simplify the base: 2×42 \times 4 equals 8, so the expression becomes (82)4\left(8^{-2}\right)^4.

Step 2: Apply the Power of a Power Rule, which states: (am)n=am×n(a^m)^n = a^{m \times n}. Here, a=8a = 8, m=2m = -2, and n=4n = 4. Calculate m×n=2×4=8m \times n = -2 \times 4 = -8.

Therefore, (82)4\left(8^{-2}\right)^4 simplifies to 888^{-8}, which can be expressed back in terms of the original base (2×4)(2 \times 4). So we write it as (2×4)8\left(2 \times 4\right)^{-8}.

Step 3: Check the given choices:

  • Choice 1: (2×4)2+4\left(2\times4\right)^{-2+4} represents an exponent of 2; incorrect.
  • Choice 2: (2×4)42\left(2\times4\right)^{\frac{4}{-2}} simplifies to -2; incorrect.
  • Choice 3: (2×4)24\left(2\times4\right)^{-2-4} simplifies to -6; incorrect.
  • Choice 4: (2×4)2×4=(2×4)8\left(2\times4\right)^{-2\times4} = \left(2\times4\right)^{-8}; correct.

Thus, the correct choice is Choice 4: (2×4)2×4\left(2\times4\right)^{-2\times4}.

Answer

(2×4)2×4 \left(2\times4\right)^{-2\times4}

Exercise #3

Insert the corresponding expression:

((3×5)3)6= \left(\left(3\times5\right)^{-3}\right)^{-6}=

Video Solution

Step-by-Step Solution

To simplify the expression ((3×5)3)6 \left(\left(3\times5\right)^{-3}\right)^{-6} , we apply exponent rules, specifically the power of a power rule.

Here's a step-by-step solution:

  • Step 1: Identify the structure of the expression: we have an outer exponent 6-6 and an inner exponent 3-3 applied to the base (3×5)(3 \times 5).

  • Step 2: Apply the power of a power rule, which states (am)n=amn(a^m)^n = a^{m \cdot n}. This combines the exponents being multiplied.

  • Step 3: Calculate the multiplication of the exponents: 3×6-3 \times -6. This yields 1818 since multiplying two negative numbers results in a positive number.

  • Step 4: Substitute back into the expression: (3×5)18\left(3 \times 5\right)^{18}.

Thus, the transformation of the original expression results in the new expression:

(3×5)3×6 \left(3\times5\right)^{-3\times-6}

Comparing with the provided choices, we see:

  • Choice 1: (3×5)3×6 \left(3\times5\right)^{-3\times-6} - This matches our solution.

  • Choices 2, 3, and 4 do not match the derived steps based on multiplying exponents.

Thus, the correct answer is choice 1: (3×5)3×6 \left(3\times5\right)^{-3\times-6} .

Answer

(3×5)3×6 \left(3\times5\right)^{-3\times-6}

Exercise #4

Insert the corresponding expression:

((6×2)4)5= \left(\left(6\times2\right)^4\right)^{-5}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the expression ((6×2)4)5\left(\left(6\times2\right)^4\right)^{-5} using exponent rules.

Here's a step-by-step breakdown of the solution:

  • Step 1: Identify the form
    The expression is ((6×2)4)5\left((6 \times 2)^4\right)^{-5}. This is a case of the power of a power: (am)n(a^m)^n, which can be rewritten as am×na^{m \times n}.
  • Step 2: Apply the power of a power rule
    Apply the rule: ((6×2)4)5=(6×2)4×(5)\left((6 \times 2)^4\right)^{-5} = (6 \times 2)^{4 \times (-5)}.
  • Step 3: Simplify the exponent
    Calculate the exponent multiplication: 4×(5)=204 \times (-5) = -20. Thus, the expression simplifies to (6×2)20(6 \times 2)^{-20}.

The resulting expression matches the format of choice 3: (6×2)4×5\left(6 \times 2\right)^{4\times-5}.

Therefore, the correct choice is Choice 3, (6×2)4×5 \left(6\times2\right)^{4\times-5} .

Answer

(6×2)4×5 \left(6\times2\right)^{4\times-5}

Exercise #5

Insert the corresponding expression:

((7×4)6)5= \left(\left(7\times4\right)^{-6}\right)^5=

Video Solution

Step-by-Step Solution

To simplify the expression ((7×4)6)5 \left(\left(7\times4\right)^{-6}\right)^5 , follow these steps, checking against the choices provided:

Step 1: Apply the power of a power rule.

  • The expression inside the parentheses 7×47\times4 acts as a single term aa.

  • Therefore, by applying (am)n=am×n(a^m)^n = a^{m \times n}, we simplify:

((7×4)6)5=(7×4)6×5 \left(\left(7\times4\right)^{-6}\right)^5 = \left(7\times4\right)^{-6 \times 5}

Step 2: Multiply the exponents.

  • Calculate 6×5=30-6 \times 5 = -30.

  • Hence, the expression simplifies to (7×4)30\left(7\times4\right)^{-30}.

Conclusion:

The correct simplified form of the expression is (7×4)6×5\left(7\times4\right)^{-6\times5}, aligning with choice 2 and your provided correct answer.

Answer

(7×4)6×5 \left(7\times4\right)^{-6\times5}

Exercise #6

Insert the corresponding expression:

((6×5)8)4= \left(\left(6\times5\right)^{-8}\right)^{-4}=

Video Solution

Step-by-Step Solution

To solve this problem, we will follow these steps:

  • Step 1: Apply the power of a power rule.

  • Step 2: Simplify the resulting power.

Let's work through the process:

Step 1: Apply the power of a power rule, which states that (am)n=am×n\left(a^m\right)^n = a^{m \times n}.
We have ((6×5)8)4\left(\left(6\times5\right)^{-8}\right)^{-4}. We can rewrite this using the power of a power rule:

((6×5)8)4=(6×5)8×(4)=(6×5)32 \left(\left(6\times5\right)^{-8}\right)^{-4} = \left(6\times5\right)^{-8 \times (-4)} = \left(6\times5\right)^{32}

Step 2: By calculating the exponent: 8×(4)=32-8 \times (-4) = 32, we find the final simplified expression to be (6×5)32\left(6\times5\right)^{32}.

Therefore, the expression reduces to (6×5)32\left(6\times5\right)^{32}, which matches choice 2.

Answer

(6×5)32 \left(6\times5\right)^{32}

Exercise #7

Insert the corresponding expression:

((7×2)3)2= \left(\left(7\times2\right)^3\right)^{-2}=

Video Solution

Step-by-Step Solution

To solve the expression ((7×2)3)2\left(\left(7 \times 2\right)^3\right)^{-2}, follow these steps:

  • Step 1: Simplify the expression inside the first parentheses. 7×2=14 7 \times 2 = 14
  • Step 2: Apply the power of a power rule. (143)2\left(14^3\right)^{-2} becomes 143×(2) 14^{3 \times (-2)}
  • Step 3: Calculate the exponent. 3×(2)=6 3 \times (-2) = -6
  • This gives us: 146 14^{-6}
  • The expression (143)2\left(14^3\right)^{-2} simplifies to (7×2)6\left(7 \times 2 \right)^{-6}.

The expression simplifies to (7×2)6\left(7 \times 2\right)^{-6}.

Now, let's match this with the given choices:

  • Choice 1: (7×2)6\left(7 \times 2\right)^{-6} - This matches our result and is the correct answer.
  • Choice 2: (7×2)23\left(7 \times 2\right)^{\frac{-2}{3}} - Incorrect, since the power of a power rule wasn’t applied correctly.
  • Choice 3: (7×2)1\left(7 \times 2\right)^{-1} - Incorrect simplification of the given problem.
  • Choice 4: (7×2)1\left(7 \times 2\right)^1 - Incorrect simplification showing misunderstanding of negative exponent rules.

Therefore, the correct answer is Choice 1: (7×2)6\left(7 \times 2\right)^{-6}.

Answer

(7×2)6 \left(7\times2\right)^{-6}

Exercise #8

Insert the corresponding expression:

((4×8)5)4= \left(\left(4\times8\right)^{-5}\right)^4=

Video Solution

Step-by-Step Solution

To solve this problem, we need to simplify the expression ((4×8)5)4\left(\left(4 \times 8\right)^{-5}\right)^4.

We'll follow these steps:

  • Step 1: Understand the expression inside the parentheses (4×8)(4 \times 8) and calculate it.

  • Step 2: Apply the power of a power property to simplify the expression.

Step 1: Calculate the expression inside the parentheses.
We have 4×8=324 \times 8 = 32, so the expression becomes (325)4\left(32^{-5}\right)^4.

Step 2: Apply the power of a power property.
This property states that (am)n=amn(a^m)^n = a^{m \cdot n}. Here, m=5m = -5 and n=4n = 4, so:

(325)4=325×4=3220(32^{-5})^4 = 32^{-5 \times 4} = 32^{-20}.

Therefore, the simplified expression is (4×8)20\left(4 \times 8\right)^{-20}.

Hence, the correct answer choice is:

  • Choice 4: (4×8)20 \left(4\times8\right)^{-20}

All other choices result from errors in applying the exponent rules or miscalculating intermediate steps:

  • Choice 1: Misapplies the exponent rules, yielding 9-9 instead of 20-20.

  • Choice 2: Incorrectly calculates the expression, resulting in 1-1.

  • Choice 3: Incorrect fractional exponent interpretation does not apply here.

Answer

(4×8)20 \left(4\times8\right)^{-20}

Exercise #9

Insert the corresponding expression:

((9×3)4)6= \left(\left(9\times3\right)^{-4}\right)^{-6}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the expression given: ((9×3)4)6\left(\left(9 \times 3\right)^{-4}\right)^{-6}
  • Step 2: Apply the power of a power rule
  • Step 3: Simplify the expression

Now, let's work through each step:

Step 1: The given expression is ((9×3)4)6\left(\left(9 \times 3\right)^{-4}\right)^{-6}.

Step 2: We'll apply the power of a power rule which states that (am)n=amn\left(a^m\right)^n = a^{m \cdot n}. In our case:

  • The base a a is 9×39 \times 3
  • The inner exponent m m is 4-4
  • The outer exponent n n is 6-6

By applying the formula, we get:

((9×3)4)6=(9×3)4×6 \left(\left(9 \times 3\right)^{-4}\right)^{-6} = \left(9 \times 3\right)^{-4 \times -6}

Step 3: Calculate the exponent:

4×6=24 -4 \times -6 = 24

Thus, the expression simplifies to:

(9×3)24 (9 \times 3)^{24}

Therefore, the solution to the problem is (9×3)24 \left(9 \times 3\right)^{24} .

Examining the multiple-choice options, the correct choice is:

  • Choice 2: (9×3)24 \left(9\times3\right)^{24}

Thus, Choice 2 is the correct answer, aligning with our calculated solution.

Answer

(9×3)24 \left(9\times3\right)^{24}

Exercise #10

Insert the corresponding expression:

((10×3)4)7= \left(\left(10\times3\right)^{-4}\right)^7=

Video Solution

Step-by-Step Solution

To solve the problem, we'll apply the exponent rule that states (am)n=am×n\left(a^m\right)^n = a^{m \times n}. Here’s how we proceed:

  • Step 1: Recognize that the expression inside is ((10×3)4)\left((10 \times 3)^{-4}\right), which is then raised to the 7th power.

  • Step 2: Use the Power of a Power Rule: (am)n=am×n\left(a^m\right)^n = a^{m \times n}.

  • Step 3: Applying this formula to our expression ((10×3)4)7\left((10 \times 3)^{-4}\right)^7, results in (10×3)4×7(10 \times 3)^{-4 \times 7}.

  • Step 4: Compute the multiplication in the exponent: 4×7=28-4 \times 7 = -28.

Therefore, ((10×3)4)7=(10×3)28\left(\left(10\times3\right)^{-4}\right)^7 = (10 \times 3)^{-28}.

Now, we need to compare our solution with the given choices:

  • Choice 1: (10×3)3 (10 \times 3)^3 .

  • Choice 2: (10×3)11 (10 \times 3)^{-11} .

  • Choice 3: (10×3)28 (10 \times 3)^{-28} .

  • Choice 4: (10×3)74 (10 \times 3)^{-\frac{7}{4}} .

The correct choice is Choice 3: (10×3)28 (10 \times 3)^{-28} , as this matches our simplified expression.

Answer

(10×3)28 \left(10\times3\right)^{-28}

Exercise #11

Insert the corresponding expression:

((5×3)4)3= \left(\left(5\times3\right)^4\right)^{-3}=

Video Solution

Step-by-Step Solution

To solve the problem, let us simplify the expression ((5×3)4)3\left(\left(5\times3\right)^4\right)^{-3}.

First, recognize that the expression inside the parentheses, 5×35 \times 3, can be multiplied to give us 15. However, we'll focus on exponent rules directly.

  • Step 1: Apply the Power of a Power Rule.
    Using the formula (am)n=am×n(a^m)^n = a^{m \times n}, simplification gives: ((5×3)4)3=((5×3)4×3)=(5×3)12.\left(\left(5\times3\right)^4\right)^{-3} = \left( (5 \times 3)^{4 \times -3} \right) = \left(5\times3\right)^{-12}.
  • Step 2: Apply the Negative Exponent Rule.
    Using an=1ana^{-n} = \frac{1}{a^n}, the expression becomes: (5×3)12=1(5×3)12.\left(5\times3\right)^{-12} = \frac{1}{\left(5\times3\right)^{12}}.

Therefore, the solution to the given expression is 1(5×3)12\frac{1}{\left(5\times3\right)^{12}}.

Now, let's verify the answer with the choices provided:

  • Choice 1: 1(5×3)12\frac{1}{\left(5\times3\right)^{12}} - This matches our solution.
  • Choice 2: (5×3)12(5\times3)^{12} - Incorrect, doesn't account for the negative exponent.
  • Choice 3: 1(5×3)1\frac{1}{\left(5\times3\right)^{-1}} - Incorrect power and doesn't represent the full expression.
  • Choice 4: 1(5×3)1\frac{1}{\left(5\times3\right)^1} - Incorrect power and doesn't reflect the original problem.

Thus, the correct choice is Choice 1: 1(5×3)12\frac{1}{\left(5\times3\right)^{12}}.

Answer

1(5×3)12 \frac{1}{\left(5\times3\right)^{12}}

Exercise #12

Insert the corresponding expression:

((7×6)5)3= \left(\left(7\times6\right)^{-5}\right)^3=

Video Solution

Step-by-Step Solution

To solve this problem, we must simplify the expression ((7×6)5)3\left(\left(7 \times 6\right)^{-5}\right)^3.

We'll follow these steps:

  • Step 1: Apply the power of a power rule.
  • Step 2: Simplify the expression into a single exponent.
  • Step 3: Convert the negative exponent to a fraction form.

Now, let's work through each step:

Step 1: The expression (7×6)5\left(7 \times 6\right)^{-5} is raised to the power 3. By the power of a power rule, we multiply the exponents:

((7×6)5)3=(7×6)5×3=(7×6)15 \left((7 \times 6)^{-5}\right)^3 = (7 \times 6)^{-5 \times 3} = (7 \times 6)^{-15}

Step 2: This simplifies the expression to (7×6)15(7 \times 6)^{-15}.

Step 3: Since we have a negative exponent, we convert it to a fraction:

(7×6)15=1(7×6)15 (7 \times 6)^{-15} = \frac{1}{(7 \times 6)^{15}}

Therefore, the simplified expression is:

1(7×6)15 \frac{1}{\left(7 \times 6\right)^{15}}

Comparing this result with the given choices, the correct answer is:

- Choice 3: 1(7×6)15 \frac{1}{\left(7 \times 6\right)^{15}}

The other choices are incorrect because they either have the wrong exponent or incorrectly handle the negative exponent.

Thus, the correct answer to the problem is 1(7×6)15 \frac{1}{\left(7 \times 6\right)^{15}} .

Answer

1(7×6)15 \frac{1}{\left(7\times6\right)^{15}}

Exercise #13

Insert the corresponding expression:

((8×4)7)6= \left(\left(8\times4\right)^{-7}\right)^6=

Video Solution

Step-by-Step Solution

To solve this expression, we will follow these steps using the rules of exponents:

  • Step 1: Apply the power of a power rule.
  • Step 2: Use the negative exponent rule to express the result as a fraction.

Now, let's apply each step:

Step 1: Apply the power of a power rule
Given: ((8×4)7)6\left(\left(8\times4\right)^{-7}\right)^6.
According to the power of a power rule, (am)n=amn(a^m)^n = a^{m \cdot n}.
So, ((8×4)7)6=(8×4)7×6=(8×4)42\left(\left(8\times4\right)^{-7}\right)^6 = \left(8\times4\right)^{-7 \times 6} = \left(8\times4\right)^{-42}.

Step 2: Use the negative exponent rule
Now, apply the negative exponent rule: am=1ama^{-m} = \frac{1}{a^m}.
Thus, (8×4)42=1(8×4)42\left(8\times4\right)^{-42} = \frac{1}{\left(8\times4\right)^{42}}.

The simplified expression is 1(8×4)42\frac{1}{\left(8\times4\right)^{42}}.

Now, let's determine which of the provided answer choices is correct:
- Choice 1: 1(8×4)42\frac{1}{\left(8\times4\right)^{-42}} is incorrect because the exponent should not be negative.
- Choice 2: 1(8×4)42\frac{1}{\left(8\times4\right)^{42}} is correct as it matches our solution.
- Choice 3: 1(8×4)1\frac{1}{\left(8\times4\right)^{-1}} is incorrect because it does not match our calculated exponent.
- Choice 4: 1(8×4)1\frac{1}{\left(8\times4\right)^1} is incorrect as the exponent is too small.

Therefore, the correct answer is 1(8×4)42\frac{1}{\left(8\times4\right)^{42}}, which corresponds to Choice 2.

Answer

1(8×4)42 \frac{1}{\left(8\times4\right)^{42}}