Solve (1/4 + 7/4 - 5/4 - 1/4) × 10 ÷ 7 ÷ 5: Complete Solution

Question

(14+745414)10:7:5=? (\frac{1}{4}+\frac{7}{4}-\frac{5}{4}-\frac{1}{4})\cdot10:7:5=\text{?}

Video Solution

Solution Steps

00:00 Order of Operations
00:03 First we'll solve what's in parentheses
00:06 Find common denominator (4)
00:19 When we have a common denominator, we connect the numerators
00:28 Now we have an expression with only multiplication and division
00:40 Let's solve the fraction
00:44 We'll continue solving from left to right, two terms at a time
01:00 Every division is actually a fraction so we'll solve it as fractions
01:04 Division of fractions is multiplication by the reciprocal
01:08 Therefore we'll convert 5 to one-fifth and multiply
01:11 Let's factor the numerator(30) into factors (5*6)
01:16 Multiply numerator by numerator and denominator by denominator
01:19 Let's reduce what we can (5 in numerator and 5 in denominator)
01:23 And that's the solution to our problem

Step-by-Step Solution

Let's simplify this expression while following the order of operations which states that exponents come before multiplication and division, which come before addition and subtraction, and that parentheses come before all of these,

Therefore, we'll start by simplifying the expressions in parentheses first:
(14+745414)10:7:5=1+751410:7:5=2410:7:5=1210:7:5 (\frac{1}{4}+\frac{7}{4}-\frac{5}{4}-\frac{1}{4})\cdot10:7:5=\\ \frac{1+7-5-1}{4}\cdot10:7:5 =\\ \frac{2}{4}\cdot10:7:5 = \\ \frac{1}{2}\cdot10:7:5

We calculated the expression inside the parentheses by adding the fractions, which we did by creating one fraction using the common denominator (4) which in this case is the denominator in all fractions, so we only added/subtracted the numerators (according to the fraction sign), then we reduced the resulting fraction,

We'll continue and note that between multiplication and division operations there is no defined precedence for either operation, therefore we'll calculate the result of the expression obtained in the last step step by step from left to right (which is the regular order in arithmetic operations), meaning we'll first perform the multiplication operation, which is the first from the left, and then we'll perform the division operation that comes after it, and so on:

1210:7:5=1102:7:5=102:7:5=5:7:5=57:5 \frac{1}{2}\cdot10:7:5 =\\ \frac{1\cdot10}{2}:7:5 =\\ \frac{10}{2}:7:5 =\\ 5:7:5 =\\ \frac{5}{7}:5

In the first step, we performed the multiplication of the fraction by the whole number, remembering that multiplying by a fraction means multiplying by the fraction's numerator, then we simplified the resulting fraction and reduced it (effectively performing the division operation that results from it), in the final step we wrote the division operation as a simple fraction, since this division operation yields a non-whole result,

We'll continue and to perform the final division operation, we'll remember that dividing by a number is the same as multiplying by its reciprocal, and therefore we'll replace the division operation with multiplication by the reciprocal:

57:5=5715 \frac{5}{7}:5 =\\ \frac{5}{7}\cdot\frac{1}{5}

In this case we preferred to multiply by the reciprocal because the divisor in the expression is a fraction and it's more convenient to perform multiplication between fractions,

We will then perform the multiplication between the fractions we got in the last step, while remembering that multiplication between fractions is performed by multiplying numerator by numerator and denominator by denominator while maintaining the fraction line, then we'll simplify the resulting expression by reducing it:

5715=5175=535=17 \frac{5}{7}\cdot\frac{1}{5} =\\ \frac{5\cdot1}{7\cdot5}=\\ \frac{5}{35}=\\ \frac{1}{7}

Let's summarize the solution steps, we got that:

(14+745414)10:7:5=1+751410:7:5=1210:7:5=5:7:5=5715=17 (\frac{1}{4}+\frac{7}{4}-\frac{5}{4}-\frac{1}{4})\cdot10:7:5=\\ \frac{1+7-5-1}{4}\cdot10:7:5 =\\ \frac{1}{2}\cdot10:7:5 =\\ 5:7:5 =\\ \frac{5}{7}\cdot\frac{1}{5} =\\ \frac{1}{7}

Therefore the correct answer is answer B.

Answer

17 \frac{1}{7}