Solve (11×9)/(10×12) Raised to (x+a) Power: Complete the Expression

Question

Insert the corresponding expression:

(11×910×12)x+a= \left(\frac{11\times9}{10\times12}\right)^{x+a}=

Step-by-Step Solution

To solve the problem, we need to simplify the expression (11×910×12)x+a \left(\frac{11\times9}{10\times12}\right)^{x+a} and write it in the form requested in the question.

We begin by using the exponent rule: (ab)n=anbn (\frac{a}{b})^n = \frac{a^n}{b^n} . Applying this rule here:

<spanclass="katex">(11×910×12)x+a=(11×9)x+a(10×12)x+a</span><span class="katex"> \left(\frac{11\times9}{10\times12}\right)^{x+a} = \frac{(11\times9)^{x+a}}{(10\times12)^{x+a}} </span>

Next, we can simplify the expression further by applying the power over a product rule: (ab)n=an×bn (ab)^n = a^n \times b^n .

Applying this rule to both the numerator and denominator gives us:

Numerator: (11×9)x+a=11x+a×9x+a (11\times9)^{x+a} = 11^{x+a} \times 9^{x+a}

Denominator: (10×12)x+a=10x+a×12x+a (10\times12)^{x+a} = 10^{x+a} \times 12^{x+a}

Therefore, the entire expression becomes:

<spanclass="katex">11x+a×9x+a10x+a×12x+a</span><span class="katex"> \frac{11^{x+a} \times 9^{x+a}}{10^{x+a} \times 12^{x+a}} </span>

This matches the given answer. Thus, the solution to the question is:

11x+a×9x+a10x+a×12x+a \frac{11^{x+a}\times9^{x+a}}{10^{x+a}\times12^{x+a}}

Answer

11x+a×9x+a10x+a×12x+a \frac{11^{x+a}\times9^{x+a}}{10^{x+a}\times12^{x+a}}