Expand the Expression: (3x-1)(x+2) Using Distribution Method

Question

Solve the exercise:

(3x1)(x+2)= (3x-1)(x+2)=

Video Solution

Step-by-Step Solution

To solve this problem, we'll apply the distributive property to expand the expression (3x1)(x+2)(3x-1)(x+2). Below are the steps:

  • Step 1: Distribute each term in the first binomial to each term in the second binomial:

3x(x)+3x(2)+(1)(x)+(1)(2)3x(x) + 3x(2) + (-1)(x) + (-1)(2)

  • Step 2: Calculate each term:

3x2+6xx23x^2 + 6x - x - 2

  • Step 3: Combine like terms:

3x2+(6xx)2=3x2+5x23x^2 + (6x - x) - 2 = 3x^2 + 5x - 2

Thus, the expanded expression is 3x2+5x23x^2 + 5x - 2.

The correct answer choice is 3x2+5x23x^2 + 5x - 2, corresponding to choice id="4".

Answer

3x2+5x2 3x^2+5x-2