It is possible to use the distributive property to simplify the expression
a(b+c)(−b−c)
To simplify the expression a(b+c)(−b−c) using the distributive property, follow these steps:
- Step 1: Apply Distributive Property to (b+c)(−b−c):
The expression (b+c)(−b−c) can be expanded using the distributive property:
(b+c)(−b−c)=b(−b−c)+c(−b−c).
- Step 2: Simplify Each Part:
Let's simplify each term individually:
- b(−b)=−b2
- b(−c)=−bc
- c(−b)=−bc
- c(−c)=−c2
So, combining these results:
(b+c)(−b−c)=−b2−bc−bc−c2=−b2−2bc−c2.
- Step 3: Distribute a Over the Result:
Now, apply a further distribution of a to get:
a(−b2−2bc−c2)=a(−b2)+a(−2bc)+a(−c2).
- Step 4: Simplify:
Perform the distribution:
- a(−b2)=−ab2
- a(−2bc)=−2abc
- a(−c2)=−ac2
Thus, the expression simplifies to:
−ab2−2abc−ac2.
Therefore, the simplified expression using the distributive property is −ab2−2abc−ac2.
Given the multiple-choice options, the correct choice that corresponds to our derived expression is:
Choice 4: Yes, −ab2−2abc−ac2
Yes, −ab2−2abc−ac2