Expand the Expression: (2y-3)(y-4) Using Binomial Multiplication

Question

Solve the exercise:

(2y3)(y4)= (2y-3)(y-4)=

Video Solution

Step-by-Step Solution

To solve the algebraic expression (2y3)(y4)(2y-3)(y-4), we will apply the distributive property, also known as the FOIL method for binomials. This involves multiplying each term in the first binomial by each term in the second binomial.

  • Step 1: Multiply the first terms: 2y×y=2y2 2y \times y = 2y^2 .
  • Step 2: Multiply the outer terms: 2y×4=8y 2y \times -4 = -8y .
  • Step 3: Multiply the inner terms: 3×y=3y -3 \times y = -3y .
  • Step 4: Multiply the last terms: 3×4=12 -3 \times -4 = 12 .

Next, we combine all these results: 2y28y3y+12 2y^2 - 8y - 3y + 12 .

Then, we combine the like terms 8y-8y and 3y-3y to get 11y-11y.

Therefore, the expanded expression is 2y211y+12 2y^2 - 11y + 12 .

This matches choice (3): 2y211y+12 2y^2 - 11y + 12 .

Thus, the solution to the problem is 2y211y+12 2y^2 - 11y + 12 .

Answer

2y211y+12 2y^2-11y+12