Simplify (a+b)·4·(b+2): Applying the Distributive Property

Question

It is possible to use the distributive property to simplify the expression

(a+b)4(b+2) (a+b)\cdot4\cdot(b+2)

Video Solution

Step-by-Step Solution

Let's simplify the expression (a+b)4(b+2)(a+b)\cdot4\cdot(b+2) using the distributive property.

Step 1: Distribute the 44 across (b+2)(b + 2).
4(b+2)=4b+4×2=4b+8 4(b + 2) = 4b + 4 \times 2 = 4b + 8

Step 2: Now distribute this result (4b+8)(4b + 8) across (a+b)(a + b).
(a+b)(4b+8)=a(4b+8)+b(4b+8) (a+b)(4b+8) = a(4b+8) + b(4b+8)

Step 3: Apply the distributive property again for both terms.
- For a(4b+8)a(4b+8), we get:
a×4b+a×8=4ab+8a a \times 4b + a \times 8 = 4ab + 8a
- For b(4b+8)b(4b+8), we get:
b×4b+b×8=4b2+8b b \times 4b + b \times 8 = 4b^2 + 8b

Step 4: Combine all parts.
The expanded expression is:
4ab+8a+4b2+8b 4ab + 8a + 4b^2 + 8b

Therefore, the simplified expression is 4ab+8a+4b2+8b\boxed{4ab + 8a + 4b^2 + 8b}, and the correct choice is:

Yes, 4ab+8a+4b2+8b4ab + 8a + 4b^2 + 8b.

Answer

Yes, 4ab+8a+4b2+8b 4ab+8a+4b^2+8b