It is possible to use the distributive property to simplify the expression
(a+b)⋅4⋅(b+2)
Let's simplify the expression (a+b)⋅4⋅(b+2) using the distributive property.
Step 1: Distribute the 4 across (b+2).
4(b+2)=4b+4×2=4b+8
Step 2: Now distribute this result (4b+8) across (a+b).
(a+b)(4b+8)=a(4b+8)+b(4b+8)
Step 3: Apply the distributive property again for both terms.
- For a(4b+8), we get:
a×4b+a×8=4ab+8a
- For b(4b+8), we get:
b×4b+b×8=4b2+8b
Step 4: Combine all parts.
The expanded expression is:
4ab+8a+4b2+8b
Therefore, the simplified expression is 4ab+8a+4b2+8b, and the correct choice is:
Yes, 4ab+8a+4b2+8b.
Yes, 4ab+8a+4b2+8b