Examples with solutions for Powers and Roots: Using powers

Exercise #1

What is the result of the following power?

(23)3 (\frac{2}{3})^3

Video Solution

Step-by-Step Solution

To solve the given power expression, we need to apply the formula for powers of a fraction. The expression we are given is:
(23)3 \left(\frac{2}{3}\right)^3

Let's break down the steps:

  • When we raise a fraction to a power, we apply the exponent to both the numerator and the denominator separately. This means raising both 2 and 3 to the power of 3.
  • Thus, we calculate:
    23=8 2^3 = 8 and 33=27 3^3 = 27 .
  • Therefore, (23)3=2333=827 \left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27} .

So, the result of the expression (23)3 \left(\frac{2}{3}\right)^3 is 827 \frac{8}{27} .

Answer

827 \frac{8}{27}

Exercise #2

21:49+28(2+2×3)= \frac{21:\sqrt{49}+2}{8-(2+2\times3)}=

Video Solution

Step-by-Step Solution

In the numerator we solve the square root exercise:

49=7 \sqrt{49}=7

In the denominator we solve the exercise within parentheses:

(2+2×3)= (2+2\times3)=

2+6=8 2+6=8

The exercise we now have is:

21:7+288= \frac{21:7+2}{8-8}=

We solve the exercise in the numerator of fractions from left to right:

21:7=3 21:7=3

3+2=5 3+2=5

We obtain the exercise:

588=50 \frac{5}{8-8}=\frac{5}{0}

Since it is impossible for the denominator of the fraction to be 0, it is impossible to solve the exercise.

Answer

Cannot be solved

Exercise #3

64:64= 6\sqrt{4}:6\sqrt{4}=

Video Solution

Answer

4 4