Examples with solutions for Powers and Roots: Parentheses within parentheses

Exercise #1

Complete the following exercise:

[(3245)(4+16)5]:(5)= \lbrack(3^2-4-5)\cdot(4+\sqrt{16})-5 \rbrack:(-5)=

Video Solution

Step-by-Step Solution

This simple example demonstrates the order of operations, which states that exponentiation precedes multiplication and division, which come before addition and subtraction, and that operations within parentheses come first,

In the given example, the operation of division between parentheses (the denominators) by a number (which is also in parentheses but only for clarification purposes), thus according to the order of operations mentioned we start with the parentheses that contain the denominators first, this parentheses that contain the denominators includes multiplication between two numbers which are also in parentheses, therefore according to the order of operations mentioned, we start with the numbers inside them, paying attention that each of these numbers, including the ones in strength, and therefore assuming that exponentiation precedes multiplication and division we consider their numerical values only in the first step and only then do we perform the operations of multiplication and division on these numbers:

[(3245)(4+16)5]:(5)=[(945)(4+4)5]:(5)=[085]:(5) \lbrack(3^2-4-5)\cdot(4+\sqrt{16})-5 \rbrack:(-5)=\\ \lbrack(9-4-5)\cdot(4+4)-5 \rbrack:(-5)=\\ \lbrack0\cdot8-5 \rbrack:(-5)\\ Continuing with the simple division in parentheses ,and according to the order of operations mentioned, we proceed from the multiplication calculation and remember that the multiplication of the number 0 by any number will yield the result 0, in the first step the operation of subtraction is performed and finally the operation of division is initiated on the number in parentheses:

[085]:(5)=[05]:(5)=5:(5)=1 \lbrack0\cdot8-5 \rbrack:(-5)= \\ \lbrack0-5 \rbrack:(-5)= \\ -5 :(-5)=\\ 1 Therefore, the correct answer is answer c.

Answer

1

Exercise #2

Solve the following:
((32+4)222):973= \big((3-2+4)^2-2^2\big):\frac{\sqrt{9}\cdot7}{3}=

Video Solution

Step-by-Step Solution

This simple example demonstrates the order of operations, which states that multiplication and division take precedence over addition and subtraction, and that operations within parentheses take precedence over all others,

Let's consider the numerator and the denominator separately (each separately) which between them performs a division operation, meaning- we can relate to the numerator and the denominator separately as fractions in their own right, thus we can write the given fraction and write it in the following form:

((32+4)222):973=((25216)2+3):((97):3) \big((3-2+4)^2-2^2\big):\frac{\sqrt{9}\cdot7}{3}= \\ \downarrow\\ \big((25-2-16)^2+3\big):\big((\sqrt{9}\cdot7):\sqrt{3} \big) We emphasize this by noting that the fractions in the numerator and the denominator should be treated separately, indeed as if they are in their own parentheses,

Let's consider additionally that the division operation between the parentheses implies that we are dividing by the value of the denominator (meaning the denominator as a whole, it is the result of the division between the numerator and the denominator) and therefore in the given fraction to form a division that we marked for attention, the denominator being in parentheses is additionally important,

Returning to the original fraction problem, meaning - in the given form, and proceed simply,

We will start and simplify the fraction in the numerator (meaning- the numerator fraction that we are dividing by), this is done in accordance with the order of operations mentioned above, therefore we will start by calculating the numerical values of the fraction that takes precedence (this within the context of setting the root as a priority, the root being strong for everything) and then proceed with the multiplication which is in the numerator, in contrast let's consider within the parentheses that are left, those parts in the denominator are divided by the whole, they are fractions in the stronger parentheses, therefore we will also simplify this fraction, this in accordance with the order of operations mentioned above:

((32+4)222):973=(5222):373=(5222):213 \big((3-2+4)^2-2^2\big):\frac{\sqrt{9}\cdot7}{3}= \\ \big(5^2-2^2\big):\frac{3\cdot7}{3}= \\ \big(5^2-2^2\big):\frac{21}{3}\\ We will continue and simplify the fraction we received in the previous step, continue simply the fraction found within the parentheses that are divided by the whole, they are the parentheses that are left, remembering that multiplication takes precedence over addition and subtraction, therefore we will start by calculating their numerical values that take precedence in those parentheses and then proceed with the subtraction operation, in the next step the division operation of the whole (and not the division operation in the whole) takes place, and in the last step the remaining division operation takes place:

(5222):213=(254):213=21:213=21:2̸1=21:7=3 \big(5^2-2^2\big):\frac{21}{3}=\\ \big(25-4\big):\frac{21}{3}=\\ 21:\frac{21}{3}=\\ 21:\frac{\not{21}}{\not{3}}=\\ 21:7=\\ 3 Let's consider that we advanced the division operation of the whole over the division operation in the whole itself, and this means that the number 21 in the fraction we discussed is divided by its numerical values of the whole (in its entirety)- which is the result of the division of the numerator by the denominator, therefore it was necessary to complete first the calculation of the numerical values of the whole and only then to divide the number 21 in this value,

We will conclude thus with the steps of simplifying the given fraction:
((32+4)222):973=(5222):213=21:7=3 \big((3-2+4)^2-2^2\big):\frac{\sqrt{9}\cdot7}{3}= \\ \big(5^2-2^2\big):\frac{21}{3}=\\ 21:7=\\ 3 Therefore, the correct answer is answer d'.

Answer

3

Exercise #3

Choose the correct answer to the following:

(25216)2+38+5:9= \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}=

Video Solution

Step-by-Step Solution

This simple rule is the emphasis on the order of operations which states that exponentiation precedes multiplication and division, which precede addition and subtraction, and that operations within parentheses precede all others,

Let's consider that the numerator is the whole and the denominator is the part which breaks (every break) into whole pieces (in their entirety) among which division operation is performed, meaning- we can relate the numerator and the denominator of the break as whole pieces in closures, thus we can express the given fraction and write it in the following form:

(25216)2+38+5:9=((25216)2+3):(8+5):9 \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}= \\ \downarrow\\ \big((25-2-16)^2+3\big):(8+5):\sqrt{9} We highlight this by noting that fractions in the numerator of the break and in its denominator are considered separately, as if they are in closures,

Let's return to the original fraction in question, meaning - in the given form, and simplify, separately, the fraction in the numerator of the break which causes it and the fraction in its denominator, this is done in accordance to the order of operations mentioned and in a systematic way,

Let's consider that in the numerator of the break the fraction we get changes into a fraction in closures which indicates strength, therefore we will start simplifying this fraction, given that this fraction includes only addition and subtraction operations, perform the operations in accordance to the natural order of operations, meaning- from left to right, simplifying the fraction in the numerator of the break:

(25216)2+38+5:9=72+313:9 \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}=\\ \frac{7^2+3}{13}:\sqrt{9}\\ We will continue and simplify the fraction we received in the previous step, this of course, in accordance to the natural order of operations (which states that exponentiation precedes multiplication and division, which precede addition and subtraction, and that operations within parentheses precede all others), therefore we will start from calculating the numerical values of the exponents in strength (while we remember that in defining the root as strength, the root itself is strength for everything), and then perform the division operation which is in the numerator of the break:

72+313:9=49+313:3=5213:3 \frac{7^2+3}{13}:\sqrt{9}=\\ \frac{49+3}{13}:3=\\ \frac{52}{13}:3\\ We will continue and simplify the fraction we received in the previous step, starting with performing the division operation of the break, this is done by approximation, and then perform the remaining division operation:

5̸21̸3:3=4:3=43 \frac{\not{52}}{\not{13}}:3=\\ 4:3=\\ \frac{4}{3} In the previous step, given that the outcome of the division operation is different from a whole (greater than whole for the numerator, given that the divisor is greater than the dividend) we marked its outcome as a fraction in approximation (where the numerator is greater than the denominator),

We conclude the steps of simplifying the given fraction, we found that:

(25216)2+38+5:9=72+313:9=5213:3=43 \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}=\\ \frac{7^2+3}{13}:\sqrt{9}=\\ \frac{52}{13}:3=\\ \frac{4}{3} Therefore, the correct answer is answer b'.

Note:

Let's consider that in the group of the previous steps in solving the problem, we can start recording the break and the division operation that affects it even without the break, but with the help of the division operation:

5213:352:13:3 \frac{52}{13}:3\\ \downarrow\\ 52:13:3 And from here on we will start calculating the division operation in the break and only after that we performed the division in number 3, we emphasize that in general we simplify this fraction in accordance to the natural order of operations, meaning we perform the operations one after the other from left to right, and this means that there is no precedence of one division operation in the given fraction over the other except as defined by the natural order of operations, meaning- in calculating from left to right, (Let's consider additionally that defining the order of operations mentioned at the beginning of the solution, which states that exponentiation precedes multiplication and division, which precede addition and subtraction, and that operations within parentheses precede all others, does not define precedence even among multiplication and division, and therefore the judgment between these two operations, in different closures, is in a different order, it is in calculating from left to right).

Answer

43 \frac{4}{3}

Exercise #4

Complete the following exercise:


[(823+52+72)2:100](100:10)= [(8^2-3+5^2+7\cdot2)^2:100]\cdot(100:10)=

Video Solution

Step-by-Step Solution

We will simplify this expression while maintaining the order of operations which states that parentheses come before multiplication and division,which come before addition and subtraction.

Let's start first by simplifying the expressions in the parentheses, we will note that in this expression there are two pairs of parentheses between which multiplication takes place.

Notice that the left inner parentheses are raised to a power, so let's start simplifying the expression which is within the inner parentheses.

((823+52+72)2:100)(100:10)=((643+25+14)2:100)(100:10)=(1002:100)(100:10) \big((8^2-3+5^2+7\cdot2)^2:100 \big)\cdot(100:10)=\\ \big((64-3+25+14)^2:100 \big)\cdot(100:10)=\\ \big(100^2:100 \big)\cdot(100:10) We simplified the expression which is in the inner parentheses found within the left parentheses.

We did this in two steps because there are addition and subtraction operations between terms in parentheses, and there is also multiplication of terms (according to the order of operations, we first calculated the terms in parentheses, then we calculated the result of the multiplication in these parentheses and then we performed the addition and subtraction operations which are in the parentheses).

Then, we will simplify the expression which is in the left parentheses first, and only then we will simplify the expression which is in the right parentheses.

We will start by calculating the term in parentheses since parentheses precede multiplication and division, then we will perform the division operation which is in the parentheses:

(1002:100)(100:10)=(10000:100)(100:10)=100(100:10)=10010=1000 \big(100^2:100 \big)\cdot(100:10)=\\ \big(10000:100 \big)\cdot(100:10)=\\ 100\cdot(100:10)=\\ 100\cdot10=\\ 1000 In the last steps we divided within the right set of parentheses and finally we multiplied.

Let's summarize the steps of simplifying the given expression:

((823+52+72)2:100)(100:10)=(1002:100)(100:10)=100(100:10)=10010=1000 \big((8^2-3+5^2+7\cdot2)^2:100 \big)\cdot(100:10)=\\ \big(100^2:100 \big)\cdot(100:10)=\\ 100\cdot(100:10)=\\ 100\cdot10=\\ 1000 Therefore the correct answer is answer C.

Note:

The expression in the left parentheses in the last steps can be calculated numerically step by step as described there, but note that it is also possible to reach the same result without calculating their numerical value of the terms in the expression, by using the law of exponents to give terms with identical bases:

aman=amn \frac{a^m}{a^n}=a^{m-n} This is done as follows:
1002:100=1002100=10021=100 100^2:100=\\ \frac{100^2}{100}=\\ 100^{2-1}=\\ 100 First we converted the division operation to a fraction, then we applied the above law of exponents while remembering that any number can be represented as the same number to the power of 1 (and any number to the power of 1 equals the number itself) .

Answer

1000

Exercise #5

Check the correct answer:

[(348+5):(62+9)](6442)= [(3^4-8+5):(6^2+\sqrt{9})]-(\sqrt{64}-4^2)=

Video Solution

Answer

10

Exercise #6

Marque la respuesta correcta:

(53:253:(35)):(8319)= \big(5^3:\sqrt{25}\cdot3:(3\cdot5)\big):(8\cdot3-19)=

Video Solution

Answer

1

Exercise #7

[(42)2]3= [(4-2)^2]^3=

Video Solution

Answer

64

Exercise #8

Complete the following exercise:


[(521672)2+81]:2= [(5^2-\sqrt{16}-72)^2+\sqrt{81}]:2=

Video Solution

Answer

29

Exercise #9

Complete the following exercise:

[(136144):232]:(35)= [(136-\sqrt{144}):2^3\cdot2]:(3\cdot5)=

Video Solution

Answer

2115 2\frac{1}{15}

Exercise #10

Complete the following exercise:

[(136144):2321]:(35)= [(136-\sqrt{144}):2^3\cdot2-1]:(3\cdot5)=

Video Solution

Answer

2

Exercise #11

Complete the following exercise:

[72(5+4)]:[(3223)14+7]3= [7^2-(5+4)]:[(3^2-2^3)^{14}+7]\cdot3=

Video Solution

Answer

15

Exercise #12

Complete the following exercise:

[((2)3+24)2:4+233]:(45)= [((-2)^3+2^4)^2:4+2^3\cdot3]:(4\cdot5)=

Video Solution

Answer

2