Examples with solutions for Negative Exponents: Calculating powers with negative exponents

Exercise #1

105=? 10^{-5}=?

Video Solution

Step-by-Step Solution

First, let's recall the negative exponent rule:

bn=1bn b^{-n}=\frac{1}{b^n} We'll apply it to the expression we received:

105=1105=1100000=0.00001 10^{-5}=\frac{1}{10^5}=\frac{1}{100000}=0.00001 In the final steps, we performed the exponentiation in the numerator and then wrote the answer as a decimal.

Therefore, the correct answer is option A.

Answer

0.00001 0.00001

Exercise #2

74=? 7^{-4}=\text{?}

Video Solution

Step-by-Step Solution

We must first remind ourselves of the negative exponent rule:

an=1an a^{-n}=\frac{1}{a^n} When applied to given the expression we obtain the following:

74=174=12401 7^{-4}=\frac{1}{7^4}=\frac{1}{2401}

Therefore, the correct answer is option C.

Answer

12401 \frac{1}{2401}

Exercise #3

7576=? 7^5\cdot7^{-6}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the rule for multiplying exponents. (the multiplication between terms with identical bases):

aman=am+n a^m\cdot a^n=a^{m+n} We then apply it to the problem:

7576=75+(6)=756=71 7^5\cdot7^{-6}=7^{5+(-6)}=7^{5-6}=7^{-1} When in a first stage we begin by applying the aforementioned rule and then continue on to simplify the expression in the exponent,

Next, we use the negative exponent rule:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the expression obtained in the previous step:

71=171=17 7^{-1}=\frac{1}{7^1}=\frac{1}{7} We then summarise the solution to the problem: 7576=71=17 7^5\cdot7^{-6}=7^{-1}=\frac{1}{7} Therefore, the correct answer is option B.

Answer

17 \frac{1}{7}

Exercise #4

(8×9×5×3)2= (8\times9\times5\times3)^{-2}=

Video Solution

Step-by-Step Solution

We begin by applying the power rule to the products within the parentheses:

(zt)n=zntn (z\cdot t)^n=z^n\cdot t^n That is, the power applied to a product within parentheses is applied to each of the terms when the parentheses are opened,

We apply the rule to the given problem:

(8953)2=82925232 (8\cdot9\cdot5\cdot3)^{-2}=8^{-2}\cdot9^{-2}\cdot5^{-2}\cdot3^{-2} Therefore, the correct answer is option c.

Note:

Whilst it could be understood that the above power rule applies only to two terms of the product within parentheses, in reality, it is also valid for the power over a multiplication of multiple terms within parentheses, as was seen in the above problem.

A good exercise is to demonstrate that if the previous property is valid for a power over a product of two terms within parentheses (as formulated above), then it is also valid for a power over several terms of the product within parentheses (for example - three terms, etc.).

Answer

82×92×52×32 8^{-2}\times9^{-2}\times5^{-2}\times3^{-2}

Exercise #5

124126=? 12^4\cdot12^{-6}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power rule of exponents; for the multiplication of terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} We apply it to the given problem:

124126=124+(6)=1246=122 12^4\cdot12^{-6}=12^{4+(-6)}=12^{4-6}=12^{-2} When in a first stage we apply the aforementioned rule and then simplify the subsequent expression in the exponent,

Next, we use the negative exponent rule:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the expression that we obtained in the previous step:

122=1122=1144 12^{-2}=\frac{1}{12^2}=\frac{1}{144} Lastly we summarise the solution to the problem: 124126=122=1144 12^4\cdot12^{-6}=12^{-2} =\frac{1}{144} Therefore, the correct answer is option A.

Answer

1144 \frac{1}{144}

Exercise #6

(23)4=? (\frac{2}{3})^{-4}=\text{?}

Video Solution

Step-by-Step Solution

We use the formula:

(ab)n=(ba)n (\frac{a}{b})^{-n}=(\frac{b}{a})^n

Therefore, we obtain:

(32)4 (\frac{3}{2})^4

We use the formula:

(ba)n=bnan (\frac{b}{a})^n=\frac{b^n}{a^n}

Therefore, we obtain:

3424=3×3×3×32×2×2×2=8116 \frac{3^4}{2^4}=\frac{3\times3\times3\times3}{2\times2\times2\times2}=\frac{81}{16}

Answer

8116 \frac{81}{16}

Exercise #7

(3a)2=? (3a)^{-2}=\text{?}

a0 a\ne0

Video Solution

Step-by-Step Solution

We begin by using the negative exponent rule:

bn=1bn b^{-n}=\frac{1}{b^n} We apply it to the given expression and obtain the following:

(3a)2=1(3a)2 (3a)^{-2}=\frac{1}{(3a)^2} We then use the power rule for parentheses:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n We apply it to the denominator of the expression and obtain the following:

1(3a)2=132a2=19a2 \frac{1}{(3a)^2}=\frac{1}{3^2a^2}=\frac{1}{9a^2} Let's summarize the solution to the problem:

(3a)2=1(3a)2=19a2 (3a)^{-2}=\frac{1}{(3a)^2} =\frac{1}{9a^2}

Therefore, the correct answer is option A.

Answer

19a2 \frac{1}{9a^2}

Exercise #8

(0.25)2=? (0.25)^{-2}=\text{?}

Video Solution

Answer

16 16

Exercise #9

(5)3=? (-5)^{-3}=\text{?}

Video Solution

Answer

1125 -\frac{1}{125}

Exercise #10

143=? \frac{1}{4^{-3}}=?

Video Solution

Answer

64 64

Exercise #11

9300192529549=? 9^{300}\cdot\frac{1}{9^{-252}}\cdot9^{-549}=\text{?}

Video Solution

Answer

193 \frac{1}{9^{-3}}

Exercise #12

133453=? \frac{1}{-3}\cdot3^{-4}\cdot5^3=\text{?}

Video Solution

Answer

5335 -\frac{5^3}{3^5}

Exercise #13

4580145814975=? 45^{-80}\cdot\frac{1}{45^{-81}}\cdot49\cdot7^{-5}=\text{?}

Video Solution

Answer

4573 \frac{45}{7^3}

Exercise #14

42x1442=? 4^{2x}\cdot\frac{1}{4}\cdot4^{-2}=\text{?}

Video Solution

Answer

1432x \frac{1}{4^{3-2x}}