Examples with solutions for Negative Exponents: Using the laws of exponents

Exercise #1

(8×9×5×3)2= (8\times9\times5\times3)^{-2}=

Video Solution

Step-by-Step Solution

We begin by applying the power rule to the products within the parentheses:

(zt)n=zntn (z\cdot t)^n=z^n\cdot t^n That is, the power applied to a product within parentheses is applied to each of the terms when the parentheses are opened,

We apply the rule to the given problem:

(8953)2=82925232 (8\cdot9\cdot5\cdot3)^{-2}=8^{-2}\cdot9^{-2}\cdot5^{-2}\cdot3^{-2} Therefore, the correct answer is option c.

Note:

Whilst it could be understood that the above power rule applies only to two terms of the product within parentheses, in reality, it is also valid for the power over a multiplication of multiple terms within parentheses, as was seen in the above problem.

A good exercise is to demonstrate that if the previous property is valid for a power over a product of two terms within parentheses (as formulated above), then it is also valid for a power over several terms of the product within parentheses (for example - three terms, etc.).

Answer

82×92×52×32 8^{-2}\times9^{-2}\times5^{-2}\times3^{-2}

Exercise #2

(23)4=? (\frac{2}{3})^{-4}=\text{?}

Video Solution

Step-by-Step Solution

We use the formula:

(ab)n=(ba)n (\frac{a}{b})^{-n}=(\frac{b}{a})^n

Therefore, we obtain:

(32)4 (\frac{3}{2})^4

We use the formula:

(ba)n=bnan (\frac{b}{a})^n=\frac{b^n}{a^n}

Therefore, we obtain:

3424=3×3×3×32×2×2×2=8116 \frac{3^4}{2^4}=\frac{3\times3\times3\times3}{2\times2\times2\times2}=\frac{81}{16}

Answer

8116 \frac{81}{16}

Exercise #3

72(35)114132=? 7^2\cdot(3^5)^{-1}\cdot\frac{1}{4}\cdot\frac{1}{3^2}=\text{?}

Video Solution

Answer

413772 \frac{4^{-1}3^{-7}}{7^{-2}}

Exercise #4

4580145814975=? 45^{-80}\cdot\frac{1}{45^{-81}}\cdot49\cdot7^{-5}=\text{?}

Video Solution

Answer

4573 \frac{45}{7^3}

Exercise #5

108+104+(110)16=? 10^8+10^{-4}+(\frac{1}{10})^{-16}=\text{?}

Video Solution

Answer

108+1104+1016 10^8+\frac{1}{10^4}+10^{16}

Exercise #6

3x13x32x=? 3^x\cdot\frac{1}{3^{-x}}\cdot3^{2x}=\text{?}

Video Solution

Answer

(34)x (3^4)^x

Exercise #7

54(15)352=? 5^4-(\frac{1}{5})^{-3}\cdot5^{-2}=\text{?}

Video Solution

Answer

5(531) 5(5^3-1)

Exercise #8

24(12)821023=? \frac{2^{-4}\cdot(\frac{1}{2})^8\cdot2^{10}}{2^3}=\text{?}

Video Solution

Answer

25 2^{-5}

Exercise #9

943813=? 9^4\cdot3^{-8}\cdot\frac{1}{3}=\text{?}

Video Solution

Answer

31 3^{-1}

Exercise #10

78744232=? \frac{7^8}{7^{-4}\cdot4^2}\cdot32=\text{?}

Video Solution

Answer

2712 2\cdot7^{12}

Exercise #11

233232814=? \frac{2^3}{3^2}\cdot3^{-2}\cdot\sqrt[4]{81}=\text{?}

Video Solution

Answer

(23)3 (\frac{2}{3})^3

Exercise #12

1040.131081000=? \frac{10^4\cdot0.1^{-3}\cdot10^{-8}}{1000}=\text{?}

Video Solution

Answer

0.0001 0.0001