When we study the order of mathematical operations we come across the terms division bar and fraction bar, but what do they mean and why are they so special?

First of all, we must remember that the fraction bar—or vinculumis exactly the same as a division. 10:2 10:2 is the same as  102{\ {10 \over 2}} and  10/2{\ {10/ 2}}.

Two things to remember:

  • You cannot divide by 00. To prove this, let's look at the following example:  3:0={\ {3:0=}}.
    To solve this, we must be able to do the following:  0?=3{\ {0 \cdot ?=3}}. However, since there is no number that can be multiplied by 00 to give the result 33, there is also therefore no number that can be divided by 00.
  • When we have a fraction bar, it is as if there are parentheses in the numerator. We solve the numerator first and then continue with the exercise. For example:

 1022=82=4{\ {{10-2 \over 2}= {8 \over 2} = 4}}


Suggested Topics to Practice in Advance

  1. The Order of Basic Operations: Addition, Subtraction, and Multiplication
  2. Order of Operations: Exponents
  3. Order of Operations: Roots
  4. Order of Operations with Parentheses

Practice Division and Fraction Bars (Vinculum)

Examples with solutions for Division and Fraction Bars (Vinculum)

Exercise #1

Solve the following exercise:

12+30= 12+3\cdot0=

Step-by-Step Solution

According to the order of operations, we first multiply and then add:

12+(30)= 12+(3\cdot0)=

3×0=0 3\times0=0

12+0=12 12+0=12

Answer

12 12

Exercise #2

Solve the following exercise:

2+0:3= 2+0:3=

Step-by-Step Solution

According to the order of operations rules, we first divide and then add:

2+(0:3)= 2+(0:3)=

0:3=0 0:3=0

2+0=2 2+0=2

Answer

2 2

Exercise #3

25+2510= \frac{25+25}{10}=

Video Solution

Step-by-Step Solution

Let's begin by multiplying the numerator:

25+25=50 25+25=50

We obtain the following fraction:

5010 \frac{50}{10}

Finally let's reduce the numerator and denominator by 10 and we are left with the following result:

51=5 \frac{5}{1}=5

Answer

5 5

Exercise #4

0:7+1= 0:7+1=

Video Solution

Step-by-Step Solution

According to the order of operations rules, we first divide and then add:

0:7=0 0:7=0

0+1=1 0+1=1

Answer

1 1

Exercise #5

12+1+0= 12+1+0= ?

Video Solution

Step-by-Step Solution

According to the order of operations, the exercise is solved from left to right as it only involves an addition operation:

12+1=13 12+1=13

13+0=13 13+0=13

Answer

13

Exercise #6

0+0.2+0.6= 0+0.2+0.6= ?

Video Solution

Step-by-Step Solution

According to the order of operations, the exercise is solved from left to right as it contains only an addition operation:

0+0.2=0.2 0+0.2=0.2

0.2+0.6=0.8 0.2+0.6=0.8

Answer

0.8

Exercise #7

12+0+12= \frac{1}{2}+0+\frac{1}{2}= ?

Video Solution

Step-by-Step Solution

According to the order of operations, since the exercise only involves addition operations, we will solve the problem from left to right:

12+0=12 \frac{1}{2}+0=\frac{1}{2}

12+12=11=1 \frac{1}{2}+\frac{1}{2}=\frac{1}{1}=1

Answer

1 1

Exercise #8

Solve the following exercise:

90+0.5= 9-0+0.5=

Video Solution

Step-by-Step Solution

According to the order of operations rules, since the exercise only involves addition and subtraction, we will solve the problem from left to right:

90=9 9-0=9

9+0.5=9.5 9+0.5=9.5

Answer

9.5

Exercise #9

Solve the following exercise:

19+10= 19+1-0=

Video Solution

Step-by-Step Solution

According to the order of operations rules, since the exercise only involves addition and subtraction operations, we will solve the problem from left to right:

19+1=20 19+1=20

200=20 20-0=20

Answer

20 20

Exercise #10

2+0:3= 2+0:3=

Video Solution

Step-by-Step Solution

According to the order of operations rules, we first divide and then add:

0:3=0 0:3=0

2+0=2 2+0=2

Answer

2 2

Exercise #11

12+3×0= 12+3\times0=

Video Solution

Step-by-Step Solution

According to the order of operations, we first multiply and then add:

3×0=0 3\times0=0

12+0=12 12+0=12

Answer

12

Exercise #12

8×(5×1)= 8\times(5\times1)=

Video Solution

Step-by-Step Solution

According to the order of operations, we first solve the expression in parentheses:

5×1=5 5\times1=5

Now we multiply:

8×5=40 8\times5=40

Answer

40

Exercise #13

7×1+12= ? 7\times1+\frac{1}{2}=\text{ ?}

Video Solution

Step-by-Step Solution

According to the order of operations, we first place the multiplication operation inside parenthesis:

(7×1)+12= (7\times1)+\frac{1}{2}=

Then, we perform this operation:

7×1=7 7\times1=7

Finally, we are left with the answer:

7+12=712 7+\frac{1}{2}=7\frac{1}{2}

Answer

712 7\frac{1}{2}

Exercise #14

63×1= ? \frac{6}{3}\times1=\text{ ?}

Video Solution

Step-by-Step Solution

According to the order of operations, we will solve the exercise from left to right since it only contains multiplication and division operations:

63=2 \frac{6}{3}=2

2×1=2 2\times1=2

Answer

2 2

Exercise #15

(3×515×1)+32= (3\times5-15\times1)+3-2=

Video Solution

Step-by-Step Solution

This simple rule is the order of operations which states that exponentiation precedes multiplication and division, which precede addition and subtraction, and that operations enclosed in parentheses precede all others,

Following the simple rule, multiplication comes before division and subtraction, therefore we calculate the values of the multiplications and then proceed with the operations of division and subtraction

35151+32=1515+32=1 3\cdot5-15\cdot1+3-2= \\ 15-15+3-2= \\ 1 Therefore, the correct answer is answer B.

Answer

1 1