Where:
is the base of the exponent
is what appears inside the log, can also appear in parentheses
is the exponent we raise the log base to in order to get the number that appears inside the log.
\( 2\log_82+\log_83= \)
\( \frac{1}{2}\log_24\times\log_38+\log_39\times\log_37= \)
\( 3\log_49+8\log_4\frac{1}{3}= \)
\( \log7x+\log(x+1)-\log7=\log2x-\log x \)
\( ?=x \)
\( \log_{10}3+\log_{10}4= \)
We break it down into parts
We substitute into the equation
Where:
y
Therefore
Defined domain
x>0
x+1>0
x>-1
We reduce by: and by
Undefined domain x>0
Defined domain
\( \log_974+\log_9\frac{1}{2}= \)
\( \log_24+\log_25= \)
\( \log_2x+\log_2\frac{x}{2}=5 \)
?=x
Find X
\( \frac{\log_84x+\log_8(x+2)}{\log_83}=3 \)
\( \log3x+\log(x-1)=3 \)
\( ?=x \)
?=x
Find X
\( \log_4x+\log_4(x+2)=2 \)
?=a
\( \ln(a+5)+\ln(a+7)=0 \)
\( \frac{\log_45+\log_42}{3\log_42}= \)
\( \log4x+\log2-\log9=\log_24 \)
?=x
\( \log_9e^3\times(\log_224-\log_28)(\ln8+\ln2) \)
?=a
?=x