The definition of the log is:
The definition of the log is:
Where:
is the base of the log
is what appears inside the log. It can also appear inside of parentheses
is the exponent to which we raise the base of the log in order to obtain the number inside the log.
Let's switch the positions of the log base and the log content using the following formula:
\( \frac{1}{\log_49}= \)
\( \frac{1}{\ln8}= \)
\( (\log_7x)^{-1}= \)
\( \frac{\frac{2x}{\log_89}}{\log_98}= \)
\( \frac{4a^2}{\log_79}\colon\log_97=16 \)
Calculate a.
Calculate a.
\( \frac{1}{\ln4}\cdot\frac{1}{\log_810}= \)
\( \frac{\log_311}{\log_34}+\frac{1}{\ln3}\cdot2\log3= \)
\( \frac{2\log_78}{\log_74}+\frac{1}{\log_43}\times\log_29= \)
\( -3(\frac{\ln4}{\ln5}-\log_57+\frac{1}{\log_65})= \)
\( \frac{\log_76-\log_71.5}{3\log_72}\cdot\frac{1}{\log_{\sqrt{8}}2}= \)
\( \frac{\log_8x^3}{\log_8x^{1.5}}+\frac{1}{\log_{49}x}\times\log_7x^5= \)
\( \frac{1}{\log_x3}\times x^2\log_{\frac{1}{x}}27+4x+6=0 \)
\( x=\text{?} \)
\( \frac{1}{\log_{2x}6}\times\log_236=\frac{\log_5(x+5)}{\log_52} \)
\( x=\text{?} \)
Find X
\( \frac{1}{\log_{x^4}2}\times x\log_x16+4x^2=7x+2 \)
Find X