Short Multiplication Formulas - Examples, Exercises and Solutions

Question Types:
Difference of squares: Finding the Domain of a Square Root FunctionDifference of squares: Identify the greater valueDifference of squares: More than one factorizationDifference of squares: Using rootsSquare of Difference: Equations with denominatorsSquare of sum: Equations with Variables on One SideSquare of sum: Using short multiplication formulasSquare of sum: Using variablesDifference of squares: Equations with denominatorsDifference of squares: Worded problemsSquare of Difference: Using quadrilateralsSquare of sum: Equations with denominatorsDifference of squares: Using fractionsSquare of Difference: Complete the missing numbersSquare of Difference: Data with powers and rootsSquare of Difference: More than one factorizationSquare of Difference: Number of termsDifference of squares: Using quadrilateralsSquare of Difference: Identify the greater valueSquare of Difference: Using fractionsSquare of sum: Complete the missing numbersSquare of sum: Identify the greater valueSquare of sum: Using fractionsSquare of sum: Using quadrilateralsDifference of squares: Complete the missing numbersDifference of squares: Number of termsSquare of Difference: Equations with variables on both sidesSquare of Difference: Resulting in a quadratic equationSquare of Difference: System of equations with no solutionSquare of Difference: Using multiple rulesSquare of sum: More than one factorizationSquare of sum: System of equations with no solutionDifference of squares: Using multiple rulesSquare of Difference: Solving the problemSquare of sum: Data with powers and rootsSquare of sum: Using multiple rulesSquare of Difference: Transition between expressionsSquare of sum: Number of termsSquare of sum: Equations with variables on both sidesSquare of sum: Solving the problemSquare of sum: Transition between expressionsSquare of sum: Resulting in a quadratic equation

Abbreviated multiplication formulas will be used throughout our math studies, from elementary school to high school. In many cases, we will need to know how to expand or add these equations to arrive at the solution to various math exercises.

Just like other math topics, even in the case of abbreviated multiplication formulas, there is nothing to fear. Understanding the formulas and lots of practice on the topic will give you complete control. So let's get started :)

Abbreviated Multiplication Formulas for 2nd Grade

Here are the basic formulas for abbreviated multiplication:

(X+Y)2=X2+2XY+Y2(X + Y)^2=X^2+ 2XY + Y^2

(XY)2=X22XY+Y2(X - Y)^2=X^2 - 2XY + Y^2

(X+Y)×(XY)=X2Y2(X + Y)\times (X - Y) = X^2 - Y^2


Abbreviated Multiplication Formulas for 3rd Grade

(a+b)3=a3+3a2b+3ab2+b3(a+b)^3=a^3+3a^2 b+3ab^2+b^3

​​​​​​​(ab)3=a33a2b+3ab2b3​​​​​​​(a-b)^3=a^3-3a^2 b+3ab^2-b^3


Abbreviated Multiplication Formulas Verification

We will test the shortcut multiplication formulas by expanding the parentheses.

(X+Y)2=(X+Y)×(X+Y)=(X + Y)^2 = (X + Y)\times (X+Y) =

X2+XY+YX+Y2=X^2 + XY + YX + Y^2=

Since: XY=YXXY = YX

X2+2XY+Y2X^2 + 2XY + Y^2


(XY)2=(XY)×(XY)=(X - Y)^2 = (X - Y)\times (X-Y) =

X2XYYX+Y2=X^2 - XY - YX + Y^2=

Since:XY=YX XY = YX

X22XY+Y2X^2 - 2XY + Y^2


(X+Y)×(XY)=(X + Y)\times (X-Y) =

X2XY+YXY2=X^2 - XY + YX - Y^2=

Since: XY=YX XY = YX

XY+YX=0 - XY + YX = 0

X2Y2X^2 - Y^2


Abbreviated Multiplication Practice

(X+2)2=X28(X + 2)^2=X^2 - 8

(X+2)2=X28-(X + 2)^2=-X^2 - 8

(X+3)2=(X4)×(X+4)(X + 3)^2=(X-4)\times (X+4)


```

Abbreviated Multiplication Practice Solutions

(X+2)2=X28(X + 2)^2=X^2 - 8

(X+2)2=X28-(X + 2)^2=-X^2 - 8

(X+3)2=(X4)×(X+4)(X + 3)^2=(X-4)\times (X+4)


Practice Short Multiplication Formulas

Examples with solutions for Short Multiplication Formulas

Exercise #1

Choose the expression that has the same value as the following:

(xy)2 (x-y)^2

Video Solution

Step-by-Step Solution

We use the abbreviated multiplication formula:

(xy)(xy)= (x-y)(x-y)=

x2xyyx+y2= x^2-xy-yx+y^2=

x22xy+y2 x^2-2xy+y^2

Answer

x22xy+y2 x^2-2xy+y^2

Exercise #2

Choose the expression that has the same value as the following:


(x+3)2 (x+3)^2

Video Solution

Step-by-Step Solution

We use the abbreviated multiplication formula:

x2+2×x×3+32= x^2+2\times x\times3+3^2=

x2+6x+9 x^2+6x+9

Answer

x2+6x+9 x^2+6x+9

Exercise #3

Solve:

(2+x)(2x)=0 (2+x)(2-x)=0

Video Solution

Step-by-Step Solution

We use the abbreviated multiplication formula:

4x2=0 4-x^2=0

We isolate the terms and extract the root:

4=x2 4=x^2

x=4 x=\sqrt{4}

x=±2 x=\pm2

Answer

±2

Exercise #4

Solve for x:

(x+3)2=x2+9 (x+3)^2=x^2+9

Video Solution

Step-by-Step Solution

Let's solve the equation. First, we'll simplify the algebraic expressions using the perfect square binomial formula:

(a±b)2=a2±2ab+b2 (a\pm b)^2=a^2\pm2ab+b^2 We'll then apply the formula we mentioned and expand the parentheses in the expression in the equation:

(x+3)2=x2+9x2+2x3+32=x2+9x2+6x+9=x2+9 (x+3)^2=x^2+9 \\ x^2+2\cdot x\cdot3+3^2=x^2+9\\ x^2+6x+9=x^2+9 We'll continue and combine like terms, by moving terms around. Later - we can notice that the squared term cancels out, therefore it's a first-degree equation, which we'll solve by isolating the variable term on one side and dividing both sides of the equation by its coefficient:

x2+6x+9=x2+96x=0/:6x=0 x^2+6x+9=x^2+9 \\ 6x=0\hspace{8pt}\text{/}:6\\ \boxed{x=0} Therefore, the correct answer is answer A.

Answer

x=0 x=0

Exercise #5

4x2+20x+25= 4x^2+20x+25=

Video Solution

Step-by-Step Solution

In this task, we are asked to simplify the formula using the abbreviated multiplication formulas.

Let's take a look at the formulas:

(xy)2=x22xy+y2 (x-y)^2=x^2-2xy+y^2

 (x+y)2=x2+2xy+y2 (x+y)^2=x^2+2xy+y^2

(x+y)×(xy)=x2y2 (x+y)\times(x-y)=x^2-y^2

Taking into account that in the given exercise there is only addition operation, the appropriate formula is the second one:

Now let us consider, what number when multiplied by itself will equal 4 and what number when multiplied by itself will equal 25?

The answers are respectively 2 and 5:

We insert these into the formula:

(2x+5)2= (2x+5)^2=

(2x+5)(2x+5)= (2x+5)(2x+5)=

2x×2x+2x×5+2x×5+5×5= 2x\times2x+2x\times5+2x\times5+5\times5=

4x2+20x+25 4x^2+20x+25

That means our solution is correct.

Answer

(2x+5)2 (2x+5)^2

Exercise #6

(7+x)(7+x)=? (7+x)(7+x)=\text{?}

Video Solution

Step-by-Step Solution

According to the shortened multiplication formula:

Since 7 and X appear twice, we raise both terms to the power:

(7+x)2 (7+x)^2

Answer

(7+x)2 (7+x)^2

Exercise #7

x2+144=24x x^2+144=24x

Video Solution

Step-by-Step Solution

Let's solve the given equation:

x2+144=24x x^2+144=24x

First, let's arrange the equation by moving terms:

x2+144=24xx224x+144=0 x^2+144=24x \\ x^2-24x+144=0

Now let's notice that we can factor the expression on the left side using the perfect square trinomial formula:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-2\textcolor{red}{a}\textcolor{blue}{b}+\textcolor{blue}{b}^2

We can do this using the fact that:

144=122 144=12^2

Therefore, we'll represent the rightmost term as a squared term:

x224x+144=0x224x+122=0 x^2-24x+144=0 \\ \downarrow\\ \textcolor{red}{x}^2-24x+\textcolor{blue}{12}^2=0

Now let's examine again the perfect square trinomial formula mentioned earlier:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2

And the expression on the left side in the equation we got in the last step:

x224x+122=0 \textcolor{red}{x}^2-\underline{24x}+\textcolor{blue}{12}^2=0

Notice that the terms x2,122 \textcolor{red}{x}^2,\hspace{6pt}\textcolor{blue}{12}^2 indeed match the form of the first and third terms in the perfect square trinomial formula (which are highlighted in red and blue),

However, in order to factor this expression (which is on the left side of the equation) using the perfect square trinomial formula mentioned, the remaining term must also match the formula, meaning the middle term in the expression (underlined):

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2

In other words - we'll ask if we can represent the expression on the left side of the equation as:

x224x+122=0?x22x12+122=0 \textcolor{red}{x}^2-\underline{24x}+\textcolor{blue}{12}^2=0\\ \updownarrow\text{?}\\ \textcolor{red}{x}^2-\underline{2\cdot\textcolor{red}{x}\cdot\textcolor{blue}{12}}+\textcolor{blue}{12}^2=0

And indeed it is true that:

2x12=24x 2\cdot x\cdot12=24x

Therefore we can represent the expression on the left side of the equation as a perfect square trinomial:

x22x12+122=0(x12)2=0 \textcolor{red}{x}^2-\underline{2\cdot\textcolor{red}{x}\cdot\textcolor{blue}{12}}+\textcolor{blue}{12}^2=0 \\ \downarrow\\ (\textcolor{red}{x}-\textcolor{blue}{12})^2=0

From here we can take the square root of both sides of the equation (and don't forget that there are two possibilities - positive and negative when taking an even root of both sides of an equation), then we'll easily solve by isolating the variable:

(x12)2=0/x12=±0x12=0x=12 (x-12)^2=0\hspace{8pt}\text{/}\sqrt{\hspace{6pt}}\\ x-12=\pm0\\ x-12=0\\ \boxed{x=12}

Let's summarize the solution of the equation:

x2+144=24xx224x+144=0x22x12+122=0(x12)2=0x12=0x=12 x^2+144=24x \\ x^2-24x+144=0 \\ \downarrow\\ \textcolor{red}{x}^2-2\cdot\textcolor{red}{x}\cdot\textcolor{blue}{12}+\textcolor{blue}{12}^2=0 \\ \downarrow\\ (\textcolor{red}{x}-\textcolor{blue}{12})^2=0 \\ \downarrow\\ x-12=0\\ \downarrow\\ \boxed{x=12}

Therefore the correct answer is answer C.

Answer

x=12 x=12

Exercise #8

x2=6x9 x^2=6x-9

Video Solution

Step-by-Step Solution

Let's solve the given equation:

x2=6x9 x^2=6x-9

First, let's arrange the equation by moving terms:

x2=6x9x26x+9=0 x^2=6x-9 \\ x^2-6x+9=0

Now let's notice that we can factor the expression on the left side using the perfect square trinomial formula for a binomial squared:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-2\textcolor{red}{a}\textcolor{blue}{b}+\textcolor{blue}{b}^2

We'll do this using the fact that:

9=32 9=3^2 Therefore, we'll represent the rightmost term as a squared term:

x26x+9=0x26x+32=0 x^2-6x+9=0 \\ \downarrow\\ \textcolor{red}{x}^2-6x+\textcolor{blue}{3}^2=0

Now let's examine again the perfect square trinomial formula mentioned earlier:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2

And the expression on the left side in the equation we got in the last step:

x26x+32=0 \textcolor{red}{x}^2-\underline{6x}+\textcolor{blue}{3}^2=0

Notice that the terms x2,32 \textcolor{red}{x}^2,\hspace{6pt}\textcolor{blue}{3}^2 indeed match the form of the first and third terms in the perfect square trinomial formula (which are highlighted in red and blue),

However, in order to factor the expression in question (which is on the left side of the equation) using the perfect square trinomial formula mentioned, the remaining term must also match the formula, meaning the middle term in the expression (underlined with a single line):

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2

In other words - we'll ask if we can represent the expression on the left side of the equation as:

x26x+32=0?x22x3+32=0 \textcolor{red}{x}^2-\underline{6x}+\textcolor{blue}{3}^2=0\\ \updownarrow\text{?}\\ \textcolor{red}{x}^2-\underline{2\cdot\textcolor{red}{x}\cdot\textcolor{blue}{3}}+\textcolor{blue}{3}^2=0

And indeed it is true that:

2x3=6x 2\cdot x\cdot3=6x

Therefore we can represent the expression on the left side of the equation as a perfect square binomial:

x22x3+32=0(x3)2=0 \textcolor{red}{x}^2-\underline{2\cdot\textcolor{red}{x}\cdot\textcolor{blue}{3}}+\textcolor{blue}{3}^2=0 \\ \downarrow\\ (\textcolor{red}{x}-\textcolor{blue}{3})^2=0

From here we can take the square root of both sides of the equation (and don't forget that there are two possibilities - positive and negative when taking an even root of both sides of an equation), then we'll easily solve by isolating the variable:

(x3)2=0/x3=±0x3=0x=3 (x-3)^2=0\hspace{8pt}\text{/}\sqrt{\hspace{6pt}}\\ x-3=\pm0\\ x-3=0\\ \boxed{x=3}

Let's summarize the solution of the equation:

x2=6x9x26x+9=0x22x3+32=0(x3)2=0x3=0x=3 x^2=6x-9 \\ x^2-6x+9=0 \\ \downarrow\\ \textcolor{red}{x}^2-2\cdot\textcolor{red}{x}\cdot\textcolor{blue}{3}+\textcolor{blue}{3}^2=0 \\ \downarrow\\ (\textcolor{red}{x}-\textcolor{blue}{3})^2=0 \\ \downarrow\\ x-3=0\\ \downarrow\\ \boxed{x=3}

Therefore the correct answer is answer C.

Answer

x=3 x=3

Exercise #9

Solve for x:

(x+2)2=x2+12 (x+2)^2=x^2+12

Video Solution

Step-by-Step Solution

Let's solve the equation. First, we'll simplify the algebraic expressions using the perfect square binomial formula:

(a±b)2=a2±2ab+b2 (a\pm b)^2=a^2\pm2ab+b^2 We'll then apply the mentioned formula and expand the parentheses in the expression in the equation:

(x+2)2=x2+12x2+2x2+22=x2+12x2+4x+4=x2+12 (x+2)^2=x^2+12 \\ x^2+2\cdot x\cdot2+2^2=x^2+12\\ x^2+4x+4=x^2+12 We'll continue and combine like terms, by moving terms around. Later - we can notice that the squared term cancels out, therefore it's a first-degree equation, which we'll solve by isolating the variable term on one side and dividing both sides of the equation by its coefficient:

x2+4x+4=x2+124x=8/:4x=2 x^2+4x+4=x^2+12 \\ 4x=8\hspace{8pt}\text{/}:4\\ \boxed{x=2} Therefore, the correct answer is answer C.

Answer

x=2 x=2

Exercise #10

Solve for x:

(x4)2=(x+2)(x1) (x-4)^2=(x+2)(x-1)

Video Solution

Step-by-Step Solution

Let's solve the equation, first we'll simplify the algebraic expressions using the extended distribution law:

(a+b)(c+d)=ac+ad+bc+bd (a+b)(c+d)=ac+ad+bc+bd We'll use the shortened multiplication formula for a squared binomial:

(a±b)2=a2±2ab+b2 (a\pm b)^2=a^2\pm2ab+b^2 We'll therefore apply the law and formula mentioned and open the parentheses in the expressions in the equation:

(x4)2=(x+2)(x1)x22x4+42=x2x+2x2x28x+16=x2+x2 (x-4)^2=(x+2)(x-1) \\ x^2-2\cdot x\cdot4+4^2=x^2-x+2x-2 \\ x^2-8x+16=x^2+x-2 We'll continue and combine like terms, by moving terms between sides - we can notice that the squared term cancels out and therefore it's a first-degree equation, which we'll solve by isolating the variable term on one side and dividing both sides of the equation by its coefficient:

x28x+16=x2+x29x=18/:(9)x=2 x^2-8x+16=x^2+x-2\\ -9x=-18\hspace{8pt}\text{/}:(-9)\\ \boxed{x=2} Therefore the correct answer is answer A.

Answer

x=2 x=2

Exercise #11

(2[x+3])2= (2\lbrack x+3\rbrack)^2=

Video Solution

Step-by-Step Solution

We will first solve the exercise by opening the inner brackets:

(2[x+3])²

(2x+6)²

We will then use the shortcut multiplication formula:

(X+Y)²=+2XY+

(2x+6)² = 2x² + 2x*6*2 + 6² = 2x+24x+36

Answer

4x2+24x+36 4x^2+24x+36

Exercise #12

6016y+y2=4 60-16y+y^2=-4

Video Solution

Step-by-Step Solution

Let's solve the given equation:

6016y+y2=4 60-16y+y^2=-4 First, let's arrange the equation by moving terms:

6016y+y2=46016y+y2+4=0y216y+64=0 60-16y+y^2=-4 \\ 60-16y+y^2+4=0 \\ y^2-16y+64=0 Now, let's note that we can break down the expression on the left side using the short quadratic factoring formula:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-2\textcolor{red}{a}\textcolor{blue}{b}+\textcolor{blue}{b}^2 This is done using the fact that:

64=82 64=8^2 So let's present the outer term on the right as a square:

y216y+64=0y216y+82=0 y^2-16y+64=0 \\ \downarrow\\ \textcolor{red}{y}^2-16y+\textcolor{blue}{8}^2=0 Now let's examine again the short factoring formula we mentioned earlier:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2 And the expression on the left side of the equation we got in the last step:

y216y+82=0 \textcolor{red}{y}^2-\underline{16y}+\textcolor{blue}{8}^2=0 Let's note that the terms y2,82 \textcolor{red}{y}^2,\hspace{6pt}\textcolor{blue}{8}^2 indeed match the form of the first and third terms in the short multiplication formula (which are highlighted in red and blue),

But in order for us to break down the relevant expression (which is on the left side of the equation) using the short formula we mentioned, the match to the short formula must also apply to the remaining term, meaning the middle term in the expression (underlined):

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2 In other words - we'll ask if it's possible to present the expression on the left side of the equation as:

y216y+82=0?y22y8+82=0 \textcolor{red}{y}^2-\underline{16y}+\textcolor{blue}{8}^2 =0 \\ \updownarrow\text{?}\\ \textcolor{red}{y}^2-\underline{2\cdot\textcolor{red}{y}\cdot\textcolor{blue}{8}}+\textcolor{blue}{8}^2 =0 And indeed it holds that:

2y8=16y 2\cdot y\cdot8=16y So we can present the expression on the left side of the given equation as a difference of two squares:

y22y8+82=0(y8)2=0 \textcolor{red}{y}^2-2\cdot\textcolor{red}{y}\cdot\textcolor{blue}{8}+\textcolor{blue}{8}^2=0 \\ \downarrow\\ (\textcolor{red}{y}-\textcolor{blue}{8})^2=0 From here we can take out square roots for the two sides of the equation (remember that there are two possibilities - positive and negative when taking out square roots), we'll solve it easily by isolating the variable on one side:

(y8)2=0/y8=±0y8=0y=8 (y-8)^2=0\hspace{8pt}\text{/}\sqrt{\hspace{6pt}}\\ y-8=\pm0\\ y-8=0\\ \boxed{y=8}

Let's summarize then the solution of the equation:

6016y+y2=4y216y+64=0y22y8+82=0(y8)2=0y8=0y=8 60-16y+y^2=-4 \\ y^2-16y+64=0 \\ \downarrow\\ \textcolor{red}{y}^2-2\cdot\textcolor{red}{y}\cdot\textcolor{blue}{8}+\textcolor{blue}{8}^2=0 \\ \downarrow\\ (\textcolor{red}{y}-\textcolor{blue}{8})^2=0 \\ \downarrow\\ y-8=0\\ \downarrow\\ \boxed{y=8}

So the correct answer is answer a.

Answer

y=8 y=8

Exercise #13

(x+1)2=x2 (x+1)^2=x^2

Video Solution

Step-by-Step Solution

Let's solve the equation. First, we'll simplify the algebraic expressions using the perfect square binomial formula:

(a±b)2=a2±2ab+b2 (a\pm b)^2=a^2\pm2ab+b^2 We'll apply the mentioned formula and expand the parentheses in the expressions in the equation:

(x+1)2=x2x2+2x1+12=x2x2+2x+1=x2 (x+1)^2=x^2 \\ x^2+2\cdot x\cdot1+1^2=x^2 \\ x^2+2x+1=x^2 \\ We'll continue and combine like terms, by moving terms between sides. Later - we can notice that the squared term cancels out, therefore it's a first-degree equation, which we'll solve by isolating the variable term on one side and dividing both sides of the equation by its coefficient:

x2+2x+1=x22x=1/:2x=12 x^2+2x+1=x^2 \\ 2x=-1\hspace{8pt}\text{/}:2\\ \boxed{x=-\frac{1}{2}} Therefore, the correct answer is answer A.

Answer

x=12 x=-\frac{1}{2}

Exercise #14

(x+2)212=x2 (x+2)^2-12=x^2

Video Solution

Step-by-Step Solution

Let's solve the equation. First, we'll simplify the algebraic expressions using the perfect square binomial formula:

(a±b)2=a2±2ab+b2 (a\pm b)^2=a^2\pm2ab+b^2 We'll apply the mentioned formula and expand the parentheses in the expressions in the equation:

(x+2)212=x2x2+2x2+2212=x2x2+4x+412=x2 (x+2)^2-12=x^2 \\ x^2+2\cdot x\cdot2+2^2-12=x^2 \\ x^2+4x+4-12=x^2 \\ We'll continue and combine like terms, by moving terms between sides. Then we can notice that the squared term cancels out, therefore it's a first-degree equation, which we'll solve by isolating the variable term on one side and dividing both sides of the equation by its coefficient:

x2+4x+412=x24x=8/:4x=2 x^2+4x+4-12=x^2 \\ 4x=8\hspace{8pt}\text{/}:4\\ \boxed{x=2} Therefore, the correct answer is answer B.

Answer

x=2 x=2

Exercise #15

(x+1)2=x2+13 (x+1)^2=x^2+13

Video Solution

Step-by-Step Solution

Let's solve the equation. First, we'll simplify the algebraic expressions using the perfect square binomial formula:

(a±b)2=a2±2ab+b2 (a\pm b)^2=a^2\pm2ab+b^2 We'll apply the mentioned formula and expand the parentheses in the expressions in the equation:

(x+1)2=x2+13x2+2x1+12=x2+13x2+2x+1=x2+13 (x+1)^2=x^2+13 \\ x^2+2\cdot x\cdot1+1^2=x^2+13 \\ x^2+2x+1=x^2+13

We'll continue and combine like terms, by moving terms between sides. Then we can notice that the squared term cancels out, therefore it's a first-degree equation, which we'll solve by isolating the variable term on one side and dividing both sides of the equation by its coefficient:

x2+2x+1=x2+132x=12/:2x=6 x^2+2x+1=x^2+13 \\ 2x=12\hspace{8pt}\text{/}:2\\ \boxed{x=6} Therefore, the correct answer is answer B.

Answer

x=6 x=6