Examples with solutions for Difference of squares: Using multiple rules

Exercise #1

Solve the exercise:

(x+3)(x3)+(x+1)(x1)=0 (x+3)(x-3)+(x+1)(x-1)=0

Video Solution

Answer

±5 ±\sqrt{5}

Exercise #2

Solve the exercise:

x416=(x2)(x2)(2+x)(2+x) x^4-16=(x-2)(x-2)(2+x)(2+x)

Video Solution

Answer

±2

Exercise #3

Is the value of the following equation true or false?

x416=(x24)(4+x2) x^4-16=(x^2-4)(4+x^2)

Video Solution

Answer

True

Exercise #4

Find a,b a ,b such that:

(a+b)(ab)=(a+b)2 (a+b)(a-b)=(a+b)^2

Video Solution

Answer

a=b a=-b o

0=b 0=b

Exercise #5

(x+5)(x+3)=x232 (x+5)(x+3)=x^2-3^2

Is the equation a true or false statement?

Video Solution

Answer

Lie

Exercise #6

(3y+4a)29(y2a)(y+2a)=? (3y+4a)^2-9(y-2a)(y+2a)=\text{?}

Video Solution

Answer

4a(6y+13a) 4a(6y+13a)

Exercise #7

(x34)2+x(8x3+2)(8x32)=? (\frac{x}{3}-4)^2+x(\frac{\sqrt{8x}}{3}+2)(\frac{\sqrt{8x}}{3}-2)=\text{?}

Video Solution

Answer

x2623x+16 x^2-6\frac{2}{3}x+16

Exercise #8

(23+m4)243(m423)2=? (\frac{2}{3}+\frac{m}{4})^2-\frac{4}{3}-(\frac{m}{4}-\frac{2}{3})^2=\text{?}

Video Solution

Answer

(2m+2)(2m2)3 \frac{(\sqrt{2m}+2)(\sqrt{2m}-2)}{3}