Solve the following equation:
1(x−2)2+1x−2=1 \frac{1}{(x-2)^2}+\frac{1}{x-2}=1 (x−2)21+x−21=1
12[5±5] \frac{1}{2}[5\pm\sqrt{5}] 21[5±5]
5±5 5\pm\sqrt{5} 5±5
x3+1(x−1)2=x+4 \frac{x^3+1}{(x-1)^2}=x+4 (x−1)2x3+1=x+4
x=112,2 x=1\frac{1}{2},2 x=121,2
x=3,12 x=3,\frac{1}{2} x=3,21
(2x−1)2x−2+(x−2)22x−1=4.5x \frac{(2x-1)^2}{x-2}+\frac{(x-2)^2}{2x-1}=4.5x x−2(2x−1)2+2x−1(x−2)2=4.5x
−1±3 -1\pm\sqrt{3} −1±3
1±12 1\pm\sqrt{12} 1±12