Examples with solutions for Square of sum: Using variables

Exercise #1

Given the rectangle ABCD

AB=X

The ratio between AB and BC is x2 \sqrt{\frac{x}{2}}

We mark the length of the diagonal A the rectangle in m

Check the correct argument:

XXXmmmAAABBBCCCDDD

Video Solution

Step-by-Step Solution

Given that:

ABBC=x2 \frac{AB}{BC}=\sqrt{\frac{x}{2}}

Given that AB equals X

We will substitute accordingly in the formula:

xBC=x2 \frac{x}{BC}=\frac{\sqrt{x}}{\sqrt{2}}

x2=BCx x\sqrt{2}=BC\sqrt{x}

x2x=BC \frac{x\sqrt{2}}{\sqrt{x}}=BC

x×x×2x=BC \frac{\sqrt{x}\times\sqrt{x}\times\sqrt{2}}{\sqrt{x}}=BC

x×2=BC \sqrt{x}\times\sqrt{2}=BC

Now let's focus on triangle ABC and use the Pythagorean theorem:

AB2+BC2=AC2 AB^2+BC^2=AC^2

Let's substitute the known values:

x2+(x×2)2=m2 x^2+(\sqrt{x}\times\sqrt{2})^2=m^2

x2+x×2=m2 x^2+x\times2=m^2

We'll add 1 to both sides:

x2+2x+1=m2+1 x^2+2x+1=m^2+1

(x+1)2=m2+1 (x+1)^2=m^2+1

Answer

m2+1=(x+1)2 m^2+1=(x+1)^2

Exercise #2

Consider the following relationships between the variables x and y:

x2+4=6y x^2+4=-6y

y2+9=4x y^2+9=-4x

Which answer is correct?

Video Solution

Answer

(x+2)2+(y+3)2=0 (x+2)^2+(y+3)^2=0

Exercise #3

Solve the following system of equations:

{x+y=61+6xy=9 \begin{cases} \sqrt{x}+\sqrt{y}=\sqrt{\sqrt{61}+6} \\ xy=9 \end{cases}

Video Solution

Answer

x=6122.5 x=\frac{\sqrt{61}}{2}-2.5

y=612+2.5 y=\frac{\sqrt{61}}{2}+2.5

or

x=612+2.5 x=\frac{\sqrt{61}}{2}+2.5

y=6122.5 y=\frac{\sqrt{61}}{2}-2.5