Calculate the area of the rectangle below in terms of a and b.
Calculate the area of the rectangle below in terms of a and b.
Calculate the area of the rectangle
Express the area of the rectangle below in terms of y and z.
Calculate the area of the rectangle below in terms of a and b.
Let us begin by reminding ourselves of the formula to calculate the area of a rectangle: width X length
When:
S = area
w = width
h = height
We take data from the sides of the rectangle in the figure.
We then substitute the above data into the formula in order to calculate the area of the rectangle:
We use the formula of the extended distributive property:
We substitute once more and solve the problem as follows:
Therefore, the correct answer is option B: ab+8a+3b+24.
Keep in mind that, since there are only addition operations, the order of the terms in the expression can be changed and, therefore,
ab + 8a + 3b + 24
Calculate the area of the rectangle
Let's begin by reminding ourselves of the formula to calculate the area of a rectangle: width X length
Where:
S = area
w = width
h = height
We extract the data from the sides of the rectangle in the figure.
We then substitute the above data into the formula in order to calculate the area of the rectangle:
We use the formula of the extended distributive property:
We once again substitute and solve the problem as follows:
Therefore, the correct answer is option C: xy+2x+5y+10.
Express the area of the rectangle below in terms of y and z.
Let us begin by reminding ourselves of the formula to calculate the area of a rectangle: width X height
Where:
S = area
w = width
h = height
We must first extract the data from the sides of the rectangle shown in the figure.
We then insert the known data into the formula in order to calculate the area of the rectangle:
We use the distributive property formula:
We substitute all known data and solve as follows:
Keep in mind that because there is a multiplication operation, the order of the terms in the expression can be changed, hence:
Therefore, the correct answer is option D: