Examples with solutions for Sum and Difference of Angles: Finding the size of angles in a triangle

Exercise #1

Calculate the size of angle X given that the triangle is equilateral.

XXXAAABBBCCC

Video Solution

Step-by-Step Solution

Remember that the sum of angles in a triangle is equal to 180.

In an equilateral triangle, all sides and all angles are equal to each other.

Therefore, we will calculate as follows:

x+x+x=180 x+x+x=180

3x=180 3x=180

We divide both sides by 3:

x=60 x=60

Answer

60

Exercise #2

ABC is an equilateral triangle.8X8X8XAAABBBCCCCalculate X.

Video Solution

Step-by-Step Solution

Since this is an equilateral triangle, all angles are also equal.

As the sum of angles in a triangle is 180 degrees, each angle is equal to 60 degrees. (180:3=60)

From this, we can conclude that: 60=8x 60=8x

Let's divide both sides by 8:

608=8x8 \frac{60}{8}=\frac{8x}{8}

7.5=x 7.5=x

Answer

7.5

Exercise #3

Below is an equilateral triangle.

Calculate X.

X+5X+5X+5AAABBBCCC

Video Solution

Step-by-Step Solution

Since in an equilateral triangle all sides are equal and all angles are equal. It is also known that in a triangle the sum of angles is 180°, we can calculate X in the following way:

X+5+X+5+X+5=180 X+5+X+5+X+5=180

3X+15=180 3X+15=180

3X=18015 3X=180-15

3X=165 3X=165

Let's divide both sides by 3:

3X3=1653 \frac{3X}{3}=\frac{165}{3}

X=55 X=55

Answer

55

Exercise #4

Three angles measure as follows: 60°, 50°, and 70°.

Is it possible that these are angles in a triangle?

Video Solution

Step-by-Step Solution

Recall that the sum of angles in a triangle equals 180 degrees.

Let's add the three angles to see if their sum equals 180:

60+50+70=180 60+50+70=180

Therefore, it is possible that these are the values of angles in some triangle.

Answer

Possible.

Exercise #5

Tree angles have the sizes:

76°, 52°, and 52°.

Is it possible that these angles are in a triangle?

Video Solution

Step-by-Step Solution

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

We will add the three angles to find out if their sum equals 180:

76+52+52=180 76+52+52=180

Therefore, these could be the values of angles in some triangle.

Answer

Yes.

Exercise #6

Tree angles have the sizes 94°, 36.5°, and 49.5. Is it possible that these angles are in a triangle?

Video Solution

Step-by-Step Solution

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

We'll add the three angles to see if their sum equals 180:

94+36.5+49.5=180 94+36.5+49.5=180

Therefore, these could be the values of angles in some triangle.

Answer

Possible.

Exercise #7

Tree angles have the sizes:

69°, 93°, and 81.

Is it possible that these angles are in a triangle?

Video Solution

Step-by-Step Solution

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

We'll add the three angles to see if their sum equals 180:

69+81+93=243 69+81+93=243

Therefore, these cannot be the values of angles in any triangle.

Answer

No.

Exercise #8

Tree angles have the sizes:

90°, 60°, and 40.

Is it possible that these angles are in a triangle?

Video Solution

Step-by-Step Solution

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

We'll add the three angles to see if their sum equals 180:

90+60+40=190 90+60+40=190

Therefore, these cannot be the values of angles in any triangle.

Answer

Yes.

Exercise #9

Tree angles have the sizes:

50°, 41°, and 81.

Is it possible that these angles are in a triangle?


Video Solution

Step-by-Step Solution

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

We'll add the three angles to see if their sum equals 180:

50+41+81=172 50+41+81=172

Therefore, these cannot be the values of angles in any triangle.

Answer

Impossible.

Exercise #10

Tree angles have the sizes:

90°, 60°, and 30.

Is it possible that these angles are in a triangle?

Video Solution

Step-by-Step Solution

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

We'll add the three angles to see if their sum equals 180:

90+60+30=180 90+60+30=180

Therefore, these could be the values of angles in some triangle.

Answer

No.

Exercise #11

Tree angles have the sizes:

31°, 122°, and 85.

Is it possible that these angles are in a triangle?

Video Solution

Step-by-Step Solution

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

We'll add the three angles to see if their sum equals 180:

31+122+85=238 31+122+85=238

Therefore, these cannot be the values of angles in any triangle.

Answer

Impossible.

Exercise #12

If a tree's angles are sizes 56°, 89°, and 17°.

Is it possible that these angles are in a triangle?

Video Solution

Step-by-Step Solution

Let's calculate the sum of the angles to see what total we get in this triangle:

56+89+17=162 56+89+17=162

The sum of angles in a triangle is 180 degrees, so this sum is not possible.

Answer

Impossible.

Exercise #13

Find all the angles of the isosceles triangle using the data in the figure.

505050AAACCCBBB

Video Solution

Step-by-Step Solution

In an isosceles triangle, the base angles are equal to each other, meaning:

B=C B=C

Since we are given angle A, we can calculate the base angles as follows:

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

18050=130 180-50=130

130:2=65 130:2=65

B=C=65 B=C=65

Answer

B=65,C=65 B=65,C=65

Exercise #14

Find all the angles of the isosceles triangle below:

707070AAABBBCCC

Video Solution

Step-by-Step Solution

Let's remember that in an isosceles triangle, the base angles are equal to each other.

In other words:

C=B C=B

We know the vertex angle, which is equal to 70 degrees, and we know that the sum of angles in a triangle is equal to 180 degrees.

Therefore, we can calculate the base angles in the following way:

18070=110 180-70=110

110:2=55 110:2=55

Therefore, the angle values in the triangle are 55, 55, and 70.

Answer

70, 55, 55

Exercise #15

Find the measure of the angle α \alpha

696969AAABBBCCC23

Video Solution

Step-by-Step Solution

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

Therefore, we will use the following formula:

A+B+C=180 A+B+C=180

Now let's input the known data:

α+69+23=180 \alpha+69+23=180

α+92=180 \alpha+92=180

We'll move the term to the other side and keep the appropriate sign:

α=18092 \alpha=180-92

α=88 \alpha=88

Answer

88

Exercise #16

Find the measure of the angle α \alpha

808080AAABBBCCC55

Video Solution

Step-by-Step Solution

Remember that the sum of angles in a triangle is equal to 180 degrees.

Therefore, we will use the following formula:

A+B+C=180 A+B+C=180

Now let's input the known data:

80+55+α=180 80+55+\alpha=180

135+α=180 135+\alpha=180

We'll move the term to the other side and keep the appropriate sign:

α=180135 \alpha=180-135

α=45 \alpha=45

Answer

45

Exercise #17

Find the measure of the angle α \alpha

505050AAABBBCCC50

Video Solution

Step-by-Step Solution

Recall that the sum of angles in a triangle equals 180 degrees.

Therefore, we will use the following formula:

A+B+C=180 A+B+C=180

Now let's insert the known data:

α+50+50=180 \alpha+50+50=180

α+100=180 \alpha+100=180

We will simplify the expression and keep the appropriate sign:

α=180100 \alpha=180-100

α=80 \alpha=80

Answer

80

Exercise #18

Find the size of angle α \alpha .

27.727.727.7AAABBBCCC41

Video Solution

Step-by-Step Solution

Note that the sum of the angles in a triangle is equal to 180 degrees.

Therefore, we can use the formula:

A+B+C=180 A+B+C=180

Then we will substitute in the known data:

α+27.7+41=180 \alpha+27.7+41=180

α+68.7=180 \alpha+68.7=180

Finally, we will move the variable to the other side while maintaining the appropriate sign:

α=18068.7 \alpha=180-68.7

α=111.3 \alpha=111.3

Answer

111.3

Exercise #19

Find the measure of the angle α \alpha

120120120AAABBBCCC27

Video Solution

Step-by-Step Solution

Let's remember that the sum of angles in a triangle is equal to 180 degrees.

Therefore, we will use the following formula:

A+B+C=180 A+B+C=180

Now let's input the known data:

120+27+α=180 120+27+\alpha=180

147+α=180 147+\alpha=180

We'll move the term to the other side and keep the appropriate sign:

α=180147 \alpha=180-147

α=33 \alpha=33

Answer

33

Exercise #20

Find all the angles of the isosceles triangle using the data in the figure.

626262AAABBBCCC

Video Solution

Step-by-Step Solution

In an isosceles triangle, the base angles are equal to each other—that is, angles C and B are equal.

C=B=62 C=B=62

Now we can calculate the vertex angle.

Remember that the sum of angles in a triangle is equal to 180 degrees, therefore:

A=1806262=56 A=180-62-62=56

The values of the angles in the triangle are 62, 62, and 56.

Answer

62, 62, 56