Examples with solutions for Slope: Determine the slope of a linear function

Exercise #1

Which best describes the function below?

y=23x y=2-3x

Video Solution

Step-by-Step Solution

Remember that the rate of change equals the slope.

In this function:

m=3 m=-3

Therefore, the function is decreasing.

Answer

The function is decreasing.

Exercise #2

Given the linear function:

y=x4 y=x-4

What is the rate of change of the function?

Video Solution

Step-by-Step Solution

Let's remember that the rate of change equals the slope.

In this case, the slope is:

m=1 m=1

Answer

m=1 m=1

Exercise #3

Choose the correct answer for the function.

y=x+1 y=-x+1

Video Solution

Step-by-Step Solution

Let's start with option A

In a linear function, to check if the functions are parallel, you must verify if their slope is the same.

y = ax+b

The slope is a

In the original formula:

 y = -x+1

The slope is 1

In option A there is no a at all, which means it equals 1, which means the slope is not the same and the option is incorrect.

 

Option B:

To check if the function passes through the points, we will try to place them in the function:

-1 = -(-2)+1

-1 = 2+1

-1 = 3

The points do not match, and therefore the function does not pass through this point.

 

Option C:

We rearrange the function, in a way that is more convenient:

y = -1-x

y = -x-1

You can see that the slope in the function is the same as we found for the original function (-1), so this is the solution!

 

Option D:

When the slope is negative, the function is decreasing, as the slope is -1, the function is negative and this answer is incorrect.

Answer

The graph is parallel to the graph of function

y=1x y=-1-x

Exercise #4

Given the linear function:

y=14x y=1-4x

What is the rate of change of the function?

Video Solution

Answer

m=4 m=-4