Solve Square Root Expression: Simplifying √(4x^4)

Question

Solve the following exercise:

4x4= \sqrt{4x^4}=

Video Solution

Solution Steps

00:00 Simplify the expression
00:03 Square root of a number (A) times square root of another number (B)
00:07 Equals the square root of their product (A times B)
00:11 Let's use this formula in our exercise, and convert from root 1 to two
00:16 We'll break down 4 to 2 squared
00:22 And X to the power of 4 to X squared to the power of 2
00:26 Square root of any number(A) squared cancels out the square
00:32 Let's use this formula in our exercise
00:35 And this is the solution to the question

Step-by-Step Solution

To simplify the given expression, we will use the following three laws of exponents:

a. Definition of root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

b. Law of exponents for an exponent applied to terms in parentheses:

(ab)n=anbn (a\cdot b)^n=a^n\cdot b^n

c. Law of exponents for an exponent raised to an exponent:

(am)n=amn (a^m)^n=a^{m\cdot n}

We'll start with converting the fourth root to an exponent using the law of exponents mentioned in a.:

4x4=(4x4)12= \sqrt{4x^4}= \\ \downarrow\\ (4x^4)^{\frac{1}{2}}=

We'll continue, using the law of exponents mentioned in b. and apply the exponent to each factor in the parentheses:

(4x4)12=412(x4)12 (4x^4)^{\frac{1}{2}}= \\ 4^{\frac{1}{2}}\cdot(x^4)^{{\frac{1}{2}}}

We'll continue, using the law of exponents mentioned in c. and perform the exponent applied to the term with an exponent in parentheses (the second factor in the multiplication):

412(x4)12=412x412=412x2=4x2=2x2 4^{\frac{1}{2}}\cdot(x^4)^{{\frac{1}{2}}} = \\ 4^{\frac{1}{2}}\cdot x^{4\cdot\frac{1}{2}}=\\ 4^{\frac{1}{2}}\cdot x^{2}=\\ \sqrt{4}\cdot x^2=\\ \boxed{2x^2}

In the final steps, we first converted the power of one-half applied to the first factor in the multiplication back to the fourth root form, again, according to the definition of root as an exponent mentioned in a. (in reverse) and then calculated the known fourth root of 4.

Therefore, the correct answer is answer b.

Answer

2x2 2x^2