Solve ((4×6)³)⁴: Calculating Nested Exponents Step-by-Step

Question

Insert the corresponding expression:

((4×6)3)4= \left(\right.\left(4\times6\right)^3)^4=

Video Solution

Step-by-Step Solution

To solve this problem, we'll use the power of a power property of exponents, which states that for any base aa and exponents mm and nn, (am)n=am×n(a^m)^n = a^{m \times n}.

  • Step 1: Identify the base and exponents:
    In the given expression ((4×6)3)4 \left(\left(4 \times 6\right)^3\right)^4, the base is (4×6)(4 \times 6), the inner exponent is 3, and the outer exponent is 4.

  • Step 2: Apply the power of a power rule:
    According to the rule, ((4×6)3)4\left((4 \times 6)^3\right)^4 simplifies to (4×6)3×4(4 \times 6)^{3 \times 4}.

  • Step 3: Calculate the new exponent:
    Multiply the exponents: 3×4=123 \times 4 = 12. Hence, the expression simplifies to (4×6)12 (4 \times 6)^{12} .

The expression ((4×6)3)4 \left(\left(4 \times 6\right)^3\right)^4 is equivalent to (4×6)3×4(4 \times 6)^{3 \times 4}. Therefore, the correct choice is:

(4×6)3×4 \left(4\times6\right)^{3\times4}

Therefore, the correct answer is Choice 1.

Answer

(4×6)3×4 \left(4\times6\right)^{3\times4}