Solve (10×2)^7)^3: Nested Exponents Challenge

Question

Insert the corresponding expression:

((10×2)7)3= \left(\right.\left(10\times2\right)^7)^3=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the expression ((10×2)7)3(\left(10 \times 2\right)^7)^3 using the rules of exponents:

  • Step 1: Identify the structure of the expression
  • Step 2: Apply the power of a power rule
  • Step 3: Verify the correctness of our answer with the provided choices

Now, let's work through each step:

Step 1: The expression ((10×2)7)3(\left(10 \times 2\right)^7)^3 involves two operations: the multiplication inside the parentheses and the power raised to another power outside.

Step 2: We use the power of a power rule (am)n=am×n(a^m)^n = a^{m \times n}. Applying this to the base (10×2)\left(10 \times 2\right) and the exponents 7 and 3, we have:

((10×2)7)3=(10×2)7×3(\left(10 \times 2\right)^7)^3 = \left(10 \times 2\right)^{7 \times 3}

This simplifies further to:

(10×2)21\left(10 \times 2\right)^{21}

Step 3: Now, let's verify with the given choices:
- Choice 1: (10×2)7+3\left(10 \times 2\right)^{7+3}, incorrect because it applies addition instead of multiplication of exponents.
- Choice 2: (10×2)7×3\left(10 \times 2\right)^{7 \times 3}, correct, as it correctly follows the power of a power rule.
- Choice 3: (10×2)73\left(10 \times 2\right)^{7-3}, incorrect because it subtracts exponents.
- Choice 4: (10×2)37\left(10 \times 2\right)^{\frac{3}{7}}, incorrect because it divides the exponents.

Therefore, the correct choice is Choice 2: (10×2)7×3\left(10 \times 2\right)^{7 \times 3}.

Hence, the simplified expression is (10×2)21\left(10 \times 2\right)^{21}.

Answer

(10×2)7×3 \left(10\times2\right)^{7\times3}