Solve (2×3)²)⁵: Evaluating Nested Exponential Expressions

Question

Insert the corresponding expression:

((2×3)2)5= \left(\right.\left(2\times3\right)^2)^5=

Video Solution

Step-by-Step Solution

To solve the problem, we will simplify the expression ((2×3)2)5\left(\left(2 \times 3\right)^2\right)^5 using the power of a power exponent rule. Follow these steps:

  • Step 1: Identify the form of the expression. The given expression is ((2×3)2)5\left(\left(2 \times 3\right)^2\right)^5.
  • Step 2: Apply the power of a power rule, which states that (am)n=am×n(a^m)^n = a^{m \times n}.
  • Step 3: Here, the base is 2×32 \times 3, the first exponent (mm) is 2, and the second exponent (nn) is 5.
  • Step 4: Multiply the exponents: 2×5=102 \times 5 = 10.

Therefore, the expression simplifies to (2×3)10\left(2 \times 3\right)^{10}. However, for the purpose of matching the form requested, it can be expressed as (2×3)2×5\left(2 \times 3\right)^{2 \times 5}.

Next, we evaluate the given choices:

  • Choice 1: (2×3)2+5\left(2 \times 3\right)^{2+5} — This incorrectly adds the exponents instead of multiplying them.
  • Choice 2: (2×3)52\left(2 \times 3\right)^{5-2} — This incorrectly subtracts the exponents.
  • Choice 3: (2×3)2×5\left(2 \times 3\right)^{2\times5} — This correctly multiplies the exponents, which we found is the right simplification.
  • Choice 4: (2×3)52\left(2 \times 3\right)^{\frac{5}{2}} — This introduces division of exponents, which is not applicable here.

The correct choice is Choice 3: (2×3)2×5\left(2 \times 3\right)^{2\times5}.

Answer

(2×3)2×5 \left(2\times3\right)^{2\times5}