Solve ((2×4)^-2)^4: Compound Exponent Chain Calculation

Question

Insert the corresponding expression:

((2×4)2)4= \left(\left(2\times4\right)^{-2}\right)^4=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the expression given and simplify the base.
  • Step 2: Apply the Power of a Power Rule for exponents.
  • Step 3: Match the result with the provided answer choices.

Let's work through each step:

Step 1: The problem gives us the expression ((2×4)2)4\left(\left(2\times4\right)^{-2}\right)^4. First, simplify the base: 2×42 \times 4 equals 8, so the expression becomes (82)4\left(8^{-2}\right)^4.

Step 2: Apply the Power of a Power Rule, which states: (am)n=am×n(a^m)^n = a^{m \times n}. Here, a=8a = 8, m=2m = -2, and n=4n = 4. Calculate m×n=2×4=8m \times n = -2 \times 4 = -8.

Therefore, (82)4\left(8^{-2}\right)^4 simplifies to 888^{-8}, which can be expressed back in terms of the original base (2×4)(2 \times 4). So we write it as (2×4)8\left(2 \times 4\right)^{-8}.

Step 3: Check the given choices:

  • Choice 1: (2×4)2+4\left(2\times4\right)^{-2+4} represents an exponent of 2; incorrect.
  • Choice 2: (2×4)42\left(2\times4\right)^{\frac{4}{-2}} simplifies to -2; incorrect.
  • Choice 3: (2×4)24\left(2\times4\right)^{-2-4} simplifies to -6; incorrect.
  • Choice 4: (2×4)2×4=(2×4)8\left(2\times4\right)^{-2\times4} = \left(2\times4\right)^{-8}; correct.

Thus, the correct choice is Choice 4: (2×4)2×4\left(2\times4\right)^{-2\times4}.

Answer

(2×4)2×4 \left(2\times4\right)^{-2\times4}