Solve Nested Exponents: ((10×7)^8)^6 Step-by-Step Solution

Question

Insert the corresponding expression:

((10×7)8)6= \left(\left(10\times7\right)^8\right)^6=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the given expression.
  • Step 2: Apply the "power of a power" rule for exponents.
  • Step 3: Perform the necessary calculations to simplify the expression.

Now, let's work through each step:

Step 1: Identify the expression ((10×7)8)6\left(\left(10 \times 7\right)^8\right)^6.
Step 2: Using the "power of a power" theorem, which states (am)n=amn(a^m)^n = a^{m \cdot n}, we apply this to the expression.
Step 3: Inside our expression, a=10×7a = 10 \times 7, m=8m = 8, and n=6n = 6. Thus, ((10×7)8)6\left(\left(10 \times 7\right)^8\right)^6 becomes (10×7)8×6\left(10 \times 7\right)^{8 \times 6}.

Step 4: Calculate the new exponent: 8×6=488 \times 6 = 48. Thus, the expression simplifies to (10×7)48\left(10 \times 7\right)^{48}.

Therefore, the solution to the problem is (10×7)48\left(10 \times 7\right)^{48}.

Now, let's consider the provided answer choices:

  • Choice 1: (10×7)2\left(10\times7\right)^2 - Incorrect because this does not align with our calculation.
  • Choice 2: (10×7)14\left(10\times7\right)^{14} - Incorrect because the exponent is not calculated as 8×68 \times 6.
  • Choice 3: (10×7)24\left(10\times7\right)^{\frac{2}{4}} - Incorrect because this exponent is not what results from 8×68 \times 6.
  • Choice 4: (10×7)48\left(10\times7\right)^{48} - Correct, as it matches our simplified result.

We conclude that the correct solution is option 4.

Answer

(10×7)48 \left(10\times7\right)^{48}