Simplify the Power Expression: 5^6 ÷ 5^13

Question

Insert the corresponding expression:

56513= \frac{5^6}{5^{13}}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll use the quotient rule for exponents:

The formula to use is aman=amn\frac{a^m}{a^n} = a^{m-n}, applicable when the bases are the same.

Let's apply this step-by-step:

  • Step 1: We have the expression 56513\frac{5^6}{5^{13}}. Identify m=6m = 6 and n=13n = 13 with base 55.
  • Step 2: Apply the formula 56513=5613\frac{5^6}{5^{13}} = 5^{6-13}.
  • Step 3: Simplify the exponent: 613=76 - 13 = -7, so 5613=575^{6-13} = 5^{-7}.
  • Step 4: Recognize that a negative exponent means a reciprocal: 57=1575^{-7} = \frac{1}{5^7}.

Therefore, the solution to the problem is 157\frac{1}{5^7}.

Now, considering the answer choices:

  • Choice 1: 575^7, not correct as it doesn't reflect the negative exponent.
  • Choice 2: 157\frac{1}{5^7}, correct since it matches our simplified solution.
  • Choice 3: 5195^{19}, incorrect; this would imply adding exponents.
  • Choice 4: a'+b' are correct. This is not relevant to our examined choices.

Thus, the correct option is Choice 2: 157\frac{1}{5^7}.

Answer

157 \frac{1}{5^7}