Solve (3a-4)(2+3a): Binomial Expression Multiplication

Question

Solve the exercise:

(3a4)(2+3a)= (3a-4)\cdot(2+3a)=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Apply the distributive property using the FOIL method.
  • Step 2: Simplify the expression.
  • Step 3: Identify the final simplified polynomial expression.

Now, let’s work through each step:

Step 1: Apply the FOIL method:
(First) Multiply the first terms of each binomial: 3a2=6a3a \cdot 2 = 6a.
(Outer) Multiply the outer terms: 3a3a=9a23a \cdot 3a = 9a^2.
(Inner) Multiply the inner terms: 42=8-4 \cdot 2 = -8.
(Last) Multiply the last terms of each binomial: 43a=12a-4 \cdot 3a = -12a.

Step 2: Combine the results:
Starting with each term from FOIL: 6a+9a2812a6a + 9a^2 - 8 - 12a.
Simplify by combining like terms: 9a2+(6a12a)8=9a26a89a^2 + (6a - 12a) - 8 = 9a^2 - 6a - 8.

Step 3: Identify the resulting polynomial expression:
The expression simplifies to 9a26a89a^2 - 6a - 8.

Therefore, the solution to the problem is 9a26a89a^2 - 6a - 8.

Answer

9a26a8 9a^2-6a-8