Evaluate (1/3)^(-4): Negative Exponent Simplification

Question

Insert the corresponding expression:

(13)4= \left(\frac{1}{3}\right)^{-4}=

Video Solution

Solution Steps

00:00 Simplify the following problem
00:03 According to the exponent laws, a fraction raised to the power (-N)
00:08 equals the reciprocal fraction raised to the opposite power (N)
00:11 We'll apply this formula to our exercise
00:15 Let's invert the fraction
00:20 and raise it to the opposite power (times(-1))
00:24 This is the solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the given expression with a negative exponent.
  • Step 2: Apply the rule for negative exponents, which allows us to convert the expression into a positive exponent form.
  • Step 3: Perform the calculation of the new expression.

Now, let's work through each step:

Step 1: The expression given is (13)4 \left(\frac{1}{3}\right)^{-4} , which involves a negative exponent.

Step 2: According to the exponent rule (ab)n=(ba)n \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n , we can rewrite the expression with a positive exponent by inverting the fraction:

(13)4=(31)4=34 \left(\frac{1}{3}\right)^{-4} = \left(\frac{3}{1}\right)^4 = 3^4 .

Step 3: Calculate 34 3^4 .

The calculation 34 3^4 is as follows:

34=3×3×3×3=81 3^4 = 3 \times 3 \times 3 \times 3 = 81 .

However, since the problem specifically asks for the corresponding expression before calculation to numerical form, the answer remains 34 3^4 .

Therefore, the answer to the problem, in terms of an equivalent expression, is 34 3^4 .

Answer

34 3^4