In multiplications: the decimal point moves to the right as many steps as the number has zeros.
In divisions: the decimal point moves to the left as many steps as the number has zeros.
In multiplications: the decimal point moves to the right as many steps as the number has zeros.
In divisions: the decimal point moves to the left as many steps as the number has zeros.
\( 0.3\times10= \)
\( 0.26\times10= \)
\( \text{0}.07\times10= \)
\( 1.14\times10= \)
\( 2.78\times10= \)
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: We need to multiply 0.3 by 10. Multiplying by 10 involves shifting the decimal point.
Step 2: Using the rule for multiplying decimals by 10, we shift the decimal point in 0.3 one place to the right.
Step 3: Originally, the decimal point in 0.3 is after the '3'. After shifting it right by one place, we get '3.0'. This is equivalent to .
Therefore, the solution to the problem is .
We will solve the problem by multiplying by . When multiplying a decimal by , the decimal point moves one place to the right.
Let's follow the steps:
Therefore, multiplying by gives us the result .
The solution to the problem is .
To solve the problem , we recognize that multiplying a decimal number by 10 involves shifting the decimal point one place to the right.
Let's work through the steps:
The decimal point's new position results in the number , representing the product of the original number and 10.
The solution to the problem is .
To solve this problem, we aim to multiply the decimal number 1.14 by 10. When multiplying a decimal number by 10, we shift the decimal point one place to the right. Let's follow these steps to solve the problem:
Therefore, moving the decimal point one position to the right transforms 1.14 into 11.4.
Hence, the product of is .
To solve multiplying the decimal number by , we'll apply the rule of moving the decimal point:
By shifting the decimal point one position right, becomes .
This operation shows that multiplying by effectively scales the value up by one power of ten.
Therefore, the solution to the problem is .
\( 1.004\times10= \)
\( 2.31\times10= \)
\( 3.41\times10= \)
\( 2.66\times10= \)
\( 0.7\times10= \)
To solve this problem, we'll follow this straightforward approach:
Now, let's perform the calculation:
The number has a decimal point after the first digit, and when we shift the decimal one place to the right, it moves between and , resulting in .
Therefore, the product of multiplied by is .
Thus, the solution to the problem is .
To solve this problem, let's multiply the decimal number by :
Step 1: Understanding the multiplication by 10.
When a decimal number is multiplied by 10, we shift the decimal point one place to the right.
Step 2: Apply the rule to .
The decimal point in is between 2 and 3. Move it one position to the right:
Step 3: After the shift, the decimal point will be positioned after the 3, resulting in .
Therefore, the solution to the problem is .
Among the choices given, corresponds to choice 1.
To solve this problem, here's a step-by-step approach:
Thus, the solution to the problem is .
We need to multiply the number by . To do this, follow these steps:
Therefore, after multiplying by , the result is .
The correct answer, based on the available choices, is: .
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: We are given the number to multiply by .
Step 2: Multiplying by moves the decimal point one position to the right.
Step 3: Performing this shift, becomes , which simplifies to .
Therefore, the solution to the problem is .
\( 1.4\times10= \)
\( 2.7\times10= \)
\( 1.52\times10= \)
\( 7.81\times10= \)
\( 11.31:10= \)
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: The decimal point in 1.4 is currently right after the 1.
Step 2: When multiplying by 10, move the decimal point one place to the right. This transforms 1.4 into 14.0, which simplifies to 14.
Therefore, the solution to the problem is .
To solve this problem, we'll use the property that states: when we multiply a decimal number by , we move its decimal point one place to the right.
Let's work through the steps:
Therefore, the product of is .
To solve the problem of multiplying 1.52 by 10, we follow these simple steps:
Let's perform these steps:
Starting with 1.52, when we shift the decimal point one place to the right, we move from 1.52 to 15.2. This is because multiplying by 10 increases the value by one order of magnitude.
Thus, the product of is . Therefore, the correct answer choice is .
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: We start with the decimal number .
Step 2: To multiply by 10, move the decimal point one position to the right:
becomes when multiplied by 10.
Step 3: Thus, the final result of multiplying is .
Therefore, the solution to the problem is .
To solve this problem, follow these steps:
Now, let's perform the calculation:
In the number 11.31, the decimal point is after the first "1". To divide by 10, move the decimal point one place to the left, resulting in the number:
This is the correct result of dividing 11.31 by 10.
Therefore, the solution to the problem is .