Examples with solutions for All Operations in Mixed Fractions: More than two fractions

Exercise #1

Solve the following exercise:

12+312+424= \frac{1}{2}+3\frac{1}{2}+4\frac{2}{4}=

Video Solution

Step-by-Step Solution

According to the order of operations, we must solve the exercise from left to right.

Let's note that in the first addition exercise, we have an addition between two halves that will give us a whole number, therefore:

12+312=4 \frac{1}{2}+3\frac{1}{2}=4

Now we will get the following exercise:

4+424= 4+4\frac{2}{4}=

Let's note that we can simplify the mixed fraction:

24=12 \frac{2}{4}=\frac{1}{2}

Now the exercise we get is:

4+412=812 4+4\frac{1}{2}=8\frac{1}{2}

Answer

812 8\frac{1}{2}

Exercise #2

212+324136= 2\frac{1}{2}+3\frac{2}{4}-1\frac{3}{6}=

Video Solution

Step-by-Step Solution

To solve this problem, we begin by converting each mixed number to an improper fraction:

  • 212 2\frac{1}{2} : Convert using the formula ac+bc\frac{ac + b}{c}, where a=2a = 2, b=1b = 1, and c=2c = 2. The improper fraction is 2×2+12=52\frac{2 \times 2 + 1}{2} = \frac{5}{2}.
  • 324 3\frac{2}{4} : Using the same formula, where a=3a = 3, b=2b = 2, and c=4c = 4. The improper fraction is 3×4+24=144\frac{3 \times 4 + 2}{4} = \frac{14}{4}, which simplifies to 72\frac{7}{2}.
  • 136 1\frac{3}{6} : Again, using the formula, where a=1a = 1, b=3b = 3, and c=6c = 6. The improper fraction is 1×6+36=96\frac{1 \times 6 + 3}{6} = \frac{9}{6}, which simplifies to 32\frac{3}{2}.

Next, we perform the addition and subtraction:

52+7232\frac{5}{2} + \frac{7}{2} - \frac{3}{2}

All fractions have the common denominator 2, so we can directly add and subtract the numerators:

(5+73)/2=92 (5 + 7 - 3) / 2 = \frac{9}{2}

Finally, convert the improper fraction 92\frac{9}{2} back to a mixed number:

9÷2=4 9 \div 2 = 4 with a remainder of 1, so 92=412\frac{9}{2} = 4\frac{1}{2}.

Therefore, the final solution to the problem is 412 4\frac{1}{2} .

Answer

412 4\frac{1}{2}

Exercise #3

23414+312= 2\frac{3}{4}-\frac{1}{4}+3\frac{1}{2}=

Video Solution

Step-by-Step Solution

To solve the problem, we need to first convert the mixed numbers 2342\frac{3}{4} and 3123\frac{1}{2} to improper fractions and then perform the operations.

Step 1: Convert the mixed numbers to improper fractions.

  • 234=2×4+34=8+34=1142\frac{3}{4} = \frac{2 \times 4 + 3}{4} = \frac{8 + 3}{4} = \frac{11}{4}
  • 312=3×2+12=6+12=723\frac{1}{2} = \frac{3 \times 2 + 1}{2} = \frac{6 + 1}{2} = \frac{7}{2}

Step 2: Find a common denominator for all fractions involved, which is 44.

  • 114\frac{11}{4} is already expressed with the denominator 44.
  • 14\frac{1}{4} is already expressed with the denominator 44.
  • 72=7×22×2=144\frac{7}{2} = \frac{7 \times 2}{2 \times 2} = \frac{14}{4}

Step 3: Perform the operations.

  • 11414+144 \frac{11}{4} - \frac{1}{4} + \frac{14}{4}
  • Perform subtraction: 11414=1114=104\frac{11}{4} - \frac{1}{4} = \frac{11 - 1}{4} = \frac{10}{4}.
  • Perform addition: 104+144=10+144=244\frac{10}{4} + \frac{14}{4} = \frac{10 + 14}{4} = \frac{24}{4}.

Step 4: Simplify the resulting fraction.

  • 244=6\frac{24}{4} = 6

The final result of 23414+312=62\frac{3}{4} - \frac{1}{4} + 3\frac{1}{2} = 6.

Therefore, the solution to the problem is 6 6 .

Answer

6 6

Exercise #4

425+1310+2120+235= 4\frac{2}{5}+1\frac{3}{10}+2\frac{1}{20}+2\frac{3}{5}=

Video Solution

Step-by-Step Solution

To solve this problem of adding mixed numbers, follow these well-defined steps:

  • Step 1: Convert the mixed numbers to improper fractions.
  • Step 2: Find the least common denominator (LCD).
  • Step 3: Convert each fraction to have the LCD as the denominator.
  • Step 4: Sum the fractions, and finally, convert back to a mixed number if necessary.

Let us apply these steps to the given numbers:

Step 1: Convert to improper fractions:
- 425=225 4\frac{2}{5} = \frac{22}{5}
- 1310=1310 1\frac{3}{10} = \frac{13}{10}
- 2120=4120 2\frac{1}{20} = \frac{41}{20}
- 235=135 2\frac{3}{5} = \frac{13}{5}

Step 2: Find the least common denominator: The denominators are 5, 10, and 20. The LCD of these is 20.

Step 3: Convert fractions to have this LCD:
- 225=8820 \frac{22}{5} = \frac{88}{20}
- 1310=2620 \frac{13}{10} = \frac{26}{20}
- 4120 remains 4120 \frac{41}{20} \text{ remains } \frac{41}{20}
- 135=5220 \frac{13}{5} = \frac{52}{20}

Step 4: Add the fractions:
8820+2620+4120+5220=20720\frac{88}{20} + \frac{26}{20} + \frac{41}{20} + \frac{52}{20} = \frac{207}{20}

Convert 20720\frac{207}{20} into a mixed number:
207÷20=10 207 \div 20 = 10 remainder 7 7 , so we have 10720 10\frac{7}{20} .

Therefore, the sum of the mixed numbers 425+1310+2120+235 4\frac{2}{5} + 1\frac{3}{10} + 2\frac{1}{20} + 2\frac{3}{5} is 10720 10\frac{7}{20} .

Answer

10720 10\frac{7}{20}

Exercise #5

512234+426= 5\frac{1}{2}-2\frac{3}{4}+4\frac{2}{6}=

Video Solution

Step-by-Step Solution

To solve this problem, we will perform the following steps:

  • Convert each mixed fraction into an improper fraction.
  • Find a common denominator for these fractions.
  • Perform the subtraction and addition operations.
  • Convert the result back into a mixed number.
  • Simplify the final answer if necessary.

Let’s proceed with these steps.

Step 1: Convert to improper fractions
For 512 5\frac{1}{2} :
512=5×2+12=112 5\frac{1}{2} = \frac{5 \times 2 + 1}{2} = \frac{11}{2}

For 234 2\frac{3}{4} :
234=2×4+34=114 2\frac{3}{4} = \frac{2 \times 4 + 3}{4} = \frac{11}{4}

For 426 4\frac{2}{6} (simplified as 413 4\frac{1}{3} ):
426=413=4×3+13=133 4\frac{2}{6} = 4\frac{1}{3} = \frac{4 \times 3 + 1}{3} = \frac{13}{3}

Step 2: Find a common denominator
The denominators are 22, 44, and 33. The least common multiple of these is 1212.
Convert each fraction:
112=11×62×6=6612 \frac{11}{2} = \frac{11 \times 6}{2 \times 6} = \frac{66}{12}
114=11×34×3=3312 \frac{11}{4} = \frac{11 \times 3}{4 \times 3} = \frac{33}{12}
133=13×43×4=5212 \frac{13}{3} = \frac{13 \times 4}{3 \times 4} = \frac{52}{12}

Step 3: Perform the operations
First, perform the subtraction:
66123312=3312 \frac{66}{12} - \frac{33}{12} = \frac{33}{12}

Now, add 3312 \frac{33}{12} and 5212 \frac{52}{12} :
3312+5212=8512 \frac{33}{12} + \frac{52}{12} = \frac{85}{12}

Step 4: Convert back to a mixed number
8512 \frac{85}{12} as a mixed number is 7112 7\frac{1}{12} because:
8512=7 \frac{85}{12} = 7 remainder 11, thus 71127\frac{1}{12}.

Step 5: Simplify
The fraction 112 \frac{1}{12} is already in its simplest form.

Therefore, the correct answer is 7112 7\frac{1}{12} .

Answer

7112 7\frac{1}{12}

Exercise #6

624+146+2712= 6\frac{2}{4}+1\frac{4}{6}+2\frac{7}{12}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll convert each mixed number to an improper fraction and then find a common denominator for the addition:

  • Convert each mixed number to an improper fraction:
    • 624=6×4+24=2646\frac{2}{4} = \frac{6 \times 4 + 2}{4} = \frac{26}{4}
    • 146=1×6+46=1061\frac{4}{6} = \frac{1 \times 6 + 4}{6} = \frac{10}{6}
    • 2712=2×12+712=31122\frac{7}{12} = \frac{2 \times 12 + 7}{12} = \frac{31}{12}
  • Find the least common denominator (LCD) of 4, 6, and 12, which is 12.
  • Rewrite each fraction with the common denominator:
    • 264=26×34×3=7812\frac{26}{4} = \frac{26 \times 3}{4 \times 3} = \frac{78}{12}
    • 106=10×26×2=2012\frac{10}{6} = \frac{10 \times 2}{6 \times 2} = \frac{20}{12}
    • 3112\frac{31}{12} is already over 12.
  • Add the fractions:
    • 7812+2012+3112=78+20+3112=12912\frac{78}{12} + \frac{20}{12} + \frac{31}{12} = \frac{78 + 20 + 31}{12} = \frac{129}{12}
  • Convert 12912\frac{129}{12} to a mixed number:
    • Divide 129 by 12. This yields 10 with a remainder of 9.
    • Therefore, the mixed number form is 1091210\frac{9}{12}.
    • Simplify 912\frac{9}{12} to 34\frac{3}{4}.

    Thus, the final result of the addition is 103410\frac{3}{4}.

    The correct answer matches choice 4: 103410\frac{3}{4}.

Answer

1034 10\frac{3}{4}

Exercise #7

627+1314+237+1114= 6\frac{2}{7}+1\frac{3}{14}+2\frac{3}{7}+1\frac{1}{14}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll proceed with these steps:

  • Step 1: Convert each mixed number to an improper fraction.
  • Step 2: Calculate the least common denominator of the fractions.
  • Step 3: Express each fraction with this common denominator.
  • Step 4: Add the fractions together.
  • Step 5: Simplify the result and convert back to a mixed number if necessary.

Let's begin the solution:

Step 1: Convert the mixed numbers to improper fractions:

  • 627=6×7+27=447 6\frac{2}{7} = \frac{6 \times 7 + 2}{7} = \frac{44}{7}
  • 1314=1×14+314=1714 1\frac{3}{14} = \frac{1 \times 14 + 3}{14} = \frac{17}{14}
  • 237=2×7+37=177 2\frac{3}{7} = \frac{2 \times 7 + 3}{7} = \frac{17}{7}
  • 1114=1×14+114=1514 1\frac{1}{14} = \frac{1 \times 14 + 1}{14} = \frac{15}{14}

Step 2: Determine the least common denominator (LCD). Here, the denominators are 7 and 14. The LCD of 7 and 14 is 14.

Step 3: Express each fraction with the common denominator of 14:

  • 447=44×214=8814 \frac{44}{7} = \frac{44 \times 2}{14} = \frac{88}{14}
  • 1714=1714 \frac{17}{14} = \frac{17}{14} (already with the denominator 14)
  • 177=17×214=3414 \frac{17}{7} = \frac{17 \times 2}{14} = \frac{34}{14}
  • 1514=1514 \frac{15}{14} = \frac{15}{14} (already with the denominator 14)

Step 4: Add the fractions together:

8814+1714+3414+1514=15414 \frac{88}{14} + \frac{17}{14} + \frac{34}{14} + \frac{15}{14} = \frac{154}{14}

Step 5: Simplify the result:

15414=11×1414=11 \frac{154}{14} = \frac{11 \times 14}{14} = 11

Thus, the solution to the problem is 11 11 .

Answer

11 11

Exercise #8

629+123+159= 6\frac{2}{9}+1\frac{2}{3}+1\frac{5}{9}=

Video Solution

Step-by-Step Solution

To solve this problem, we will follow these steps:

  • Step 1: Convert each mixed number into an improper fraction.
  • Step 2: Identify the least common denominator (LCD) for the fractions.
  • Step 3: Add the fractions together.
  • Step 4: Convert the resulting improper fraction back to a mixed number.

Now, let's work through each step in detail:

Step 1: Convert each mixed number into an improper fraction.

  • 629=(6×9)+29=54+29=5696\frac{2}{9} = \frac{(6 \times 9) + 2}{9} = \frac{54 + 2}{9} = \frac{56}{9}
  • 123=(1×3)+23=3+23=531\frac{2}{3} = \frac{(1 \times 3) + 2}{3} = \frac{3 + 2}{3} = \frac{5}{3}
  • 159=(1×9)+59=9+59=1491\frac{5}{9} = \frac{(1 \times 9) + 5}{9} = \frac{9 + 5}{9} = \frac{14}{9}

Step 2: Identify the least common denominator (LCD) for the fractions.

The denominators are 9 and 3. The least common multiple of these is 9.

Step 3: Add the fractions.

  • First, convert all fractions to have the same denominator.
  • 53\frac{5}{3} should be converted: 5×33×3=159\frac{5 \times 3}{3 \times 3} = \frac{15}{9}.
  • Add: 569+159+149=859\frac{56}{9} + \frac{15}{9} + \frac{14}{9} = \frac{85}{9}.

Step 4: Convert 859\frac{85}{9} back to a mixed number.

  • Perform the division: 85÷9=985 ÷ 9 = 9 remainder 44.
  • Therefore, 859=949\frac{85}{9} = 9\frac{4}{9}.

Therefore, the solution to the problem is 9499\frac{4}{9}.

Answer

949 9\frac{4}{9}

Exercise #9

756+623+13= ? 7\frac{5}{6}+6\frac{2}{3}+\frac{1}{3}=\text{ ?}

Video Solution

Step-by-Step Solution

Note that the right-hand side of the addition exercise between the fractions gives a result of a whole number, so we'll start with that:

623+13=7 6\frac{2}{3}+\frac{1}{3}=7

Giving us:

756+7=1456 7\frac{5}{6}+7=14\frac{5}{6}

Answer

1456 14\frac{5}{6}

Exercise #10

1027237+716= 10\frac{2}{7}-2\frac{3}{7}+7\frac{1}{6}=

Video Solution

Step-by-Step Solution

To solve the given problem 1027237+716 10\frac{2}{7} - 2\frac{3}{7} + 7\frac{1}{6} , we'll proceed with the following steps:

  • Step 1: Convert the mixed numbers to improper fractions.
    For 1027 10\frac{2}{7} , convert to 727 \frac{72}{7} , since 10×7+2=70+2=72 10 \times 7 + 2 = 70 + 2 = 72 .
    For 237 2\frac{3}{7} , convert to 177 \frac{17}{7} , since 2×7+3=14+3=17 2 \times 7 + 3 = 14 + 3 = 17 .
    For 716 7\frac{1}{6} , convert to 436 \frac{43}{6} , since 7×6+1=42+1=43 7 \times 6 + 1 = 42 + 1 = 43 .
  • Step 2: Find a common denominator.
    The denominators are 7 and 6. The least common denominator (LCD) is 42.
  • Step 3: Convert fractions to the common denominator.
    Convert 727 \frac{72}{7} to 43242 \frac{432}{42} (since 72×6=432 72 \times 6 = 432 ).
    Convert 177 \frac{17}{7} to 10242 \frac{102}{42} (since 17×6=102 17 \times 6 = 102 ).
    Convert 436 \frac{43}{6} to 30142 \frac{301}{42} (since 43×7=301 43 \times 7 = 301 ).
  • Step 4: Perform the operations.
    First, subtract: 4324210242=33042 \frac{432}{42} - \frac{102}{42} = \frac{330}{42} .
    Then, add: 33042+30142=63142 \frac{330}{42} + \frac{301}{42} = \frac{631}{42} .
  • Step 5: Simplify the result.
    Since 631 and 42 have no common factors other than 1, the fraction is already in its simplest form. Convert back to a mixed number: 631÷42=15 631 \div 42 = 15 remainder 1 1 , so 63142=15142 \frac{631}{42} = 15\frac{1}{42} .

Therefore, the solution to the problem is 15142 15\frac{1}{42} .

Answer

15142 15\frac{1}{42}

Exercise #11

13+23+234= \frac{1}{3}+\frac{2}{3}+2\frac{3}{4}=

Video Solution

Step-by-Step Solution

According to the rules of the order of operations in arithmetic, we solve the exercise from left to right.

Let's note that:

13+23=33=1 \frac{1}{3}+\frac{2}{3}=\frac{3}{3}=1

We should obtain the following exercise:

1+234=334 1+2\frac{3}{4}=3\frac{3}{4}

Answer

334 3\frac{3}{4}

Exercise #12

67x+87x+323x= \frac{6}{7}x+\frac{8}{7}x+3\frac{2}{3}x=

Video Solution

Step-by-Step Solution

Let's solve the exercise from left to right.

We will combine the left expression in the following way:

6+87x=147x=2x \frac{6+8}{7}x=\frac{14}{7}x=2x

Now we get:

2x+323x=523x 2x+3\frac{2}{3}x=5\frac{2}{3}x

Answer

523x 5\frac{2}{3}x