The function
the most basic quadratic function:

Master parabola transformations with practice problems covering y=x², y=x²+c, y=(x-p)², and y=(x-p)²+k. Learn horizontal and vertical shifts step-by-step.
the most basic quadratic function:

The family of parabolas
The basic quadratic function – with the addition of
In this family, we are given a quadratic function that clearly shows us how the function moves horizontally – how many steps it needs to move right or left.
represents the number of steps the function will move horizontally – right or left.
If is positive – (there is a minus in the equation) – the function will move steps to the right.
If is negative – (and as a result, there is a plus in the equation because minus times minus equals plus) – the function will move steps to the left.
In this quadratic function, we can see a combination of horizontal and vertical shifts:
: Determines the number of steps and the direction the function will move vertically – up or down.
positive – shift up, negative – shift down.
: Determines the number of steps and the direction the function will move horizontally – right or left.
Find the corresponding algebraic representation of the drawing:
What is the value of y for the function?
of the point ?
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: The given equation is . We need to substitute into this equation.
Step 2: Substitute to get . Calculate .
Therefore, the value of when is .
Hence, the solution to the problem is .
Answer:
Find the intersection of the function
With the Y
To solve this problem, we will find the intersection of the function with the Y-axis by following these steps:
Now, let's solve the problem:
Step 1: Identify the Y-axis intersection by setting .
Step 2: Substitute into the function:
Step 3: The intersection point on the Y-axis is .
Therefore, the solution to the problem is .
Answer:
Complete:
The missing value of the function point:
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: We start with the equation given by the function . We know , so we can write:
Step 2: To solve for , we take the square root of both sides of the equation:
Step 3: Solve for :
The square root of 16 is 4, so:
or
This gives us the two solutions: and .
Step 4: Compare these solutions to the answer choices. The correct choice is:
and
Therefore, the solution to the problem is and .
Answer:
Find the intersection of the function
With the X
To solve this problem, we'll find the intersection of the function with the x-axis. The x-axis is characterized by . Hence, we set and solve for .
Let's follow these steps:
Taking the square root of both sides gives .
Adding 2 to both sides results in .
The x-coordinate is , and since it intersects the x-axis, the y-coordinate is .
Therefore, the intersection point of the function with the x-axis is .
The correct choice from the provided options is .
Answer:
One function
to the corresponding graph:
To solve this problem, we need to match the function with its graph. This function represents a downward-opening parabola with the vertex at the origin . The coefficient is negative, confirming it opens downwards, and its large absolute value indicates that the parabola closes towards the axis more sharply than a standard curve.
Let's identify the characteristics of :
- The graph is a parabola, opening downwards.
- The vertex is at the origin, .
- Symmetric around the y-axis.
- Its steepness is greater than the standard parabola due to the coefficient .
By analyzing the given graph options, the graph marked as 4 aligns perfectly with these properties: It is centered on the origin, opens downwards, and has an evident steep slope.
Therefore, the correct graph that matches the function is option 4.
Answer:
4