Exponents and Roots

What is an exponent?

An exponent tells us the amount of times a number is to be multiplied by itself.

What is a root?

A root is the inverse operation of exponentiation, which helps us discover which number multiplied by itself gives this result.

The square root is equal to the power of 0.5.

Exponents and the Base of the Exponents

Practice Powers and Roots - Basic

Examples with solutions for Powers and Roots - Basic

Exercise #1

Choose the largest value

Video Solution

Step-by-Step Solution

Let's begin by calculating the numerical value of each of the roots in the given options:

25=516=49=3 \sqrt{25}=5\\ \sqrt{16}=4\\ \sqrt{9}=3\\ We can determine that:

5>4>3>1 Therefore, the correct answer is option A

Answer

25 \sqrt{25}

Exercise #2

Find the value of n:

6n=666 6^n=6\cdot6\cdot6 ?

Video Solution

Step-by-Step Solution

We use the formula: a×a=a2 a\times a=a^2

In the formula, we see that the power shows the number of terms that are multiplied, that is, two times

Since in the exercise we multiply 6 three times, it means that we have 3 terms.

Therefore, the power, which is n in this case, will be 3.

Answer

n=3 n=3

Exercise #3

Solve the following exercise:

x2= \sqrt{x^2}=

Video Solution

Step-by-Step Solution

In order to simplify the given expression, we will use two laws of exponents:

a. The definition of root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} b. The law of exponents for power of a power:

(am)n=amn (a^m)^n=a^{m\cdot n}

Let's start with converting the square root to an exponent using the law mentioned in a':

x2=(x2)12= \sqrt{x^2}= \\ \downarrow\\ (x^2)^{\frac{1}{2}}= We'll continue using the law of exponents mentioned in b' and perform the exponent operation on the term in parentheses:

(x2)12=x212x1=x (x^2)^{\frac{1}{2}}= \\ x^{2\cdot\frac{1}{2}}\\ x^1=\\ \boxed{x} Therefore, the correct answer is answer a'.

Answer

x x

Exercise #4

Sovle:

32+33 3^2+3^3

Video Solution

Step-by-Step Solution

Remember that according to the order of operations, exponents precede multiplication and division, which precede addition and subtraction (and parentheses always precede everything).

So first calculate the values of the terms in the power and then subtract between the results:

32+33=9+27=36 3^2+3^3 =9+27=36 Therefore, the correct answer is option B.

Answer

36

Exercise #5

5+361= 5+\sqrt{36}-1=

Video Solution

Step-by-Step Solution

To solve the expression 5+361= 5+\sqrt{36}-1= , we need to follow the order of operations, often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division, Addition and Subtraction).


Here are the steps:


First, calculate the square root:

36=6 \sqrt{36} = 6

Substitute the square root back into the expression:

5+61 5 + 6 - 1

Next, perform the addition and subtraction from left to right:

Add 5 and 6:

5+6=11 5 + 6 = 11

Then subtract 1:

111=10 11 - 1 = 10

Finally, you obtain the solution:

10 10

Answer

10 10

Exercise #6

441= \sqrt{441}=

Video Solution

Step-by-Step Solution

The root of 441 is 21.

21×21= 21\times21=

21×20+21= 21\times20+21=

420+21=441 420+21=441

Answer

21 21

Exercise #7

What is the answer to the following?

3233 3^2-3^3

Video Solution

Step-by-Step Solution

Remember that according to the order of operations, exponents come before multiplication and division, which come before addition and subtraction (and parentheses always before everything),

So first calculate the values of the terms in the power and then subtract between the results:

3233=927=18 3^2-3^3 =9-27=-18 Therefore, the correct answer is option A.

Answer

18 -18

Exercise #8

143121+18= 143-\sqrt{121}+18=

Video Solution

Step-by-Step Solution

To solve the expression 143121+18 143-\sqrt{121}+18 , we need to follow the order of operations, which dictate that we should simplify any expressions under a square root first, followed by subtraction and addition.


Step 1: Simplify the square root:

  • Calculate the square root: 121 \sqrt{121} .
  • The square root of 121 is 11, because 11×11=121 11 \times 11 = 121 .

Now, substitute back into the expression:

  • The expression becomes: 14311+18 143 - 11 + 18 .

Step 2: Perform the subtraction:

  • Calculate 14311 143 - 11 .
  • This equals 132, because subtracting 11 from 143 yields 132.

Step 3: Perform the addition:

  • Now add 18 to the result of the subtraction: 132+18 132 + 18 .
  • The result is 150, because adding 18 to 132 equals 150.

Therefore, the final answer is 150 150 .

Answer

150 150

Exercise #9

81+81+10= 81+\sqrt{81}+10=

Video Solution

Step-by-Step Solution

To solve the expression 81+81+10 81+\sqrt{81}+10 , we need to follow the order of operations, often abbreviated as PEMDAS (Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)).

Here, the expression contains a square root, which is a type of exponent operation. Therefore, we will handle the square root first:

  • Find the square root of 81, which is calculated as follows: 81=9 \sqrt{81} = 9 .

Now substitute the result back into the original expression:

81+9+10 81 + 9 + 10

Next, perform the addition operations from left to right:

  • First, add 81 and 9: 81+9=90 81 + 9 = 90 .
  • Then, add the result to 10: 90+10=100 90 + 10 = 100 .

Therefore, the final result of the expression 81+81+10 81+\sqrt{81}+10 is:

100 100

Answer

100 100

Exercise #10

Solve the following exercise and circle the correct answer:

4243= 4^2-4^3=

Video Solution

Step-by-Step Solution

To solve the expression 4243 4^2 - 4^3 , we start by evaluating each power separately:

  • Calculate 42 4^2 :
    42 4^2 means 4 4 multiplied by itself, which is 4×4=16 4 \times 4 = 16 .

  • Calculate43 4^3 :
    43 4^3 means 4 4 multiplied by itself three times, which is 4×4×4=64 4 \times 4 \times 4 = 64 .

Next, substitute these values back into the expression:

  • 4243=1664 4^2 - 4^3 = 16 - 64

Perform the subtraction:

  • 1664=48 16 - 64 = -48

Thus, the correct answer is 48-48.

Answer

-48

Exercise #11

Solve the following exercise and circle the correct answer:

5241= 5^2-4^1=

Video Solution

Step-by-Step Solution

To solve the exercise 5241= 5^2-4^1= , we need to follow the order of operations, specifically focusing on powers (exponents) before performing subtraction.

  • Step 1: Calculate 52 5^2 . This means we multiply 5 by itself: 5×5=25 5 \times 5 = 25 .

  • Step 2: Calculate 41 4^1 . Any number to the power of 1 is itself, so 41=4 4^1 = 4 .

  • Step 3: Subtract the result of 41 4^1 from 52 5^2 : 254 25 - 4 .

  • Step 4: Complete the subtraction: 254=21 25 - 4 = 21 .

Thus, the correct answer is 21 21 .

Answer

21

Exercise #12

Solve the following exercise and circle the correct answer:

5242+22= 5^2-4^2+2^2=

Video Solution

Step-by-Step Solution

To solve the expression 5242+22 5^2 - 4^2 + 2^2 , we'll need to follow the order of operations, often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)). Here, we only have exponents and basic arithmetic.


  • First, calculate the powers:
    52=25 5^2 = 25 ,
    42=16 4^2 = 16 ,
    22=4 2^2 = 4 .

  • Now substitute the calculated values back into the expression:
    2516+4 25 - 16 + 4 .

  • Perform the subtraction and addition from left to right:
    2516=9 25 - 16 = 9 .

  • Then add 4 to 9:
    9+4=13 9 + 4 = 13 .

The final answer is 13 13 .

Answer

13

Exercise #13

Solve the following exercise and circle the correct answer:

6362= 6^3-6^2=

Video Solution

Step-by-Step Solution

To solve the expression 6362 6^3 - 6^2 , we will follow the order of operations, which in this case involves evaluating the powers before the subtraction operation.

  • First, evaluate 63 6^3 :
    • 63 6^3 means 6×6×6 6 \times 6 \times 6 .
    • Calculating this, we get 6×6=36 6 \times 6 = 36 .
    • Then multiply 36 by 6 to get 36×6=216 36 \times 6 = 216 .
  • Next, evaluate 62 6^2 :
    • 62 6^2 means 6×6 6 \times 6 .
    • Calculating this gives us 36 36 .
  • Finally, subtract the second result from the first:
    • That is 21636 216 - 36 .
    • Performing the subtraction, we get 180 180 .

Thus, the result of the expression 6362 6^3 - 6^2 is 180 180 .

Answer

180

Exercise #14

Solve the following exercise and circle the correct answer:

7172= 7^1-7^2=

Video Solution

Step-by-Step Solution

To solve the expression 7172 7^1 - 7^2 , we need to evaluate the powers first before performing the subtraction. The steps are as follows:

  • Calculate 71 7^1 : Since any number to the power of 1 is the number itself, we have 71=7 7^1 = 7 .
  • Calculate 72 7^2 : This means 7 is multiplied by itself, which gives us 7×7=49 7 \times 7 = 49 .
  • Subtract the results: Now, perform the subtraction 749 7 - 49 .
  • This yields: 749=42 7 - 49 = -42 .

Thus, the correct answer is 42 -42 .

Answer

42 -42

Exercise #15

4×0.49+42= 4\times\sqrt{0.49}+4^2=

Video Solution

Step-by-Step Solution

To solve the expression 4×0.49+42= 4\times\sqrt{0.49}+4^2 = , we will follow the order of operations, which prioritizes operations inside parentheses, exponents and roots, followed by multiplication and division, and finally addition and subtraction.

1. Calculate the Square Root:
The first step is to solve the square root part of the expression. 0.49 \sqrt{0.49} .
0.49 0.49 is a simple decimal number whose square root is 0.7 0.7 , because 0.7×0.7=0.49 0.7 \times 0.7 = 0.49 .
So,0.49=0.7 \sqrt{0.49} = 0.7 .

2. Multiply:
Next, we multiply the result of the square root by 4:
4×0.7=2.8 4 \times 0.7 = 2.8 .

3. Calculate the Power:
Evaluate 42 4^2 .
42=16 4^2 = 16 , because 4×4=16 4 \times 4 = 16 .

4. Addition:
Now, add the results from the previous steps:
2.8+16=18.8 2.8 + 16 = 18.8 .

The final result of the expression 4×0.49+42 4\times\sqrt{0.49}+4^2 is 18.8 \boxed{18.8} .

Answer

18.8