Examples with solutions for Square Root Quotient Property: Number of terms

Exercise #1

Solve the following exercise:

24816= \sqrt{\frac{2}{4}}\cdot\sqrt{\frac{8}{16}}=

Video Solution

Step-by-Step Solution

To solve the given exercise, let's simplify each square root expression separately:

  • Step 1: Simplify 24 \sqrt{\frac{2}{4}} .

    The fraction 24 \frac{2}{4} simplifies to 12 \frac{1}{2} . Thus, 24=12=12=12 \sqrt{\frac{2}{4}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{1}}{\sqrt{2}} = \frac{1}{\sqrt{2}} .

  • Step 2: Simplify 816 \sqrt{\frac{8}{16}} .

    The fraction 816 \frac{8}{16} simplifies to 12 \frac{1}{2} . Thus, 816=12=12=12 \sqrt{\frac{8}{16}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{1}}{\sqrt{2}} = \frac{1}{\sqrt{2}} .

  • Step 3: Multiply the results from Step 1 and Step 2.

    24816=1212=1122=12 \sqrt{\frac{2}{4}} \cdot \sqrt{\frac{8}{16}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1 \cdot 1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2} .

Therefore, the solution to the given expression is 12 \frac{1}{2} .

Answer

12 \frac{1}{2}

Exercise #2

Solve the following exercise:

1052554= \frac{\sqrt{10}\cdot\sqrt{5}\cdot\sqrt{2}}{\sqrt{5}\cdot\sqrt{5}\cdot\sqrt{4}}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the given expression step by step:

First, let's simplify the numerator:

1052=1052=100\sqrt{10} \cdot \sqrt{5} \cdot \sqrt{2} = \sqrt{10 \cdot 5 \cdot 2} = \sqrt{100}.

Simplifying further, 100=10\sqrt{100} = 10.

Next, simplify the denominator:

554=554=100\sqrt{5} \cdot \sqrt{5} \cdot \sqrt{4} = \sqrt{5 \cdot 5 \cdot 4} = \sqrt{100}.

And 100=10\sqrt{100} = 10.

Now, divide the simplified numerator by the simplified denominator:

1010=1\frac{10}{10} = 1.

Therefore, the solution to the problem is 1 1 .

Answer

1 1

Exercise #3

Solve the following exercise:

246= \sqrt{\frac{2}{4}}\cdot\sqrt{6}=

Video Solution

Step-by-Step Solution

To solve the expression 246\sqrt{\frac{2}{4}} \cdot \sqrt{6}, we will break it down and simplify step by step.

Step 1: Simplify the square root of the fraction.
24\sqrt{\frac{2}{4}} can be rewritten using the square root of a quotient property:
24=24\sqrt{\frac{2}{4}} = \frac{\sqrt{2}}{\sqrt{4}}.

Step 2: Simplify 4\sqrt{4}.
Since 4=2\sqrt{4} = 2, the expression becomes:
22\frac{\sqrt{2}}{2}.

Step 3: Multiply by 6\sqrt{6}.
Now multiply 22\frac{\sqrt{2}}{2} by 6\sqrt{6}:
226=262\frac{\sqrt{2}}{2} \cdot \sqrt{6} = \frac{\sqrt{2 \cdot 6}}{2}.

Step 4: Simplify the square root.
The multiplication inside the square root becomes 12\sqrt{12}, so:
122\frac{\sqrt{12}}{2}.

Step 5: Simplify 12\sqrt{12}.
Since 12=43=43=23\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3},
this results in 232=3\frac{2\sqrt{3}}{2} = \sqrt{3}.

Therefore, the solution to the problem is 3\sqrt{3}.

Answer

3 \sqrt{3}

Exercise #4

Solve the following exercise:

124322= \frac{\sqrt{12}\cdot\sqrt{4}\cdot\sqrt{3}}{\sqrt{2}\cdot\sqrt{2}}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Simplify the numerator by multiplying the square roots together.
  • Simplify the denominator by recognizing that 2×2\sqrt{2} \times \sqrt{2} equals 2.
  • Apply the quotient rule for square roots to simplify the expression.

Now, let's work through each step:
Step 1: The numerator is 1243\sqrt{12} \cdot \sqrt{4} \cdot \sqrt{3}. Using the product property, combine them into one square root:
12×4×3=144\sqrt{12 \times 4 \times 3} = \sqrt{144}.

Step 2: The denominator is 22=4=2\sqrt{2} \cdot \sqrt{2} = \sqrt{4} = 2.

Step 3: Now apply the quotient rule:
1442=1444=36\frac{\sqrt{144}}{2} = \sqrt{\frac{144}{4}} = \sqrt{36}.

The result of 36\sqrt{36} is 6.

Therefore, the solution to the problem is 66.

Answer

6

Exercise #5

Solve the following exercise:

81499= \frac{\sqrt{81}\cdot\sqrt{4}}{\sqrt{9}\cdot\sqrt{9}}=

Video Solution

Step-by-Step Solution

To solve the problem, we'll simplify the expression 81499 \frac{\sqrt{81}\cdot\sqrt{4}}{\sqrt{9}\cdot\sqrt{9}} using square root properties and arithmetic operations.

Step 1: Simplify each square root individually:

  • 81=9\sqrt{81} = 9, 4=2\sqrt{4} = 2.
  • Both 9\sqrt{9} terms are equal to 3.
Thus, the expression becomes 9233 \frac{9 \cdot 2}{3 \cdot 3} .

Step 2: Perform multiplication of numbers:

  • Numerator: 9×2=189 \times 2 = 18.
  • Denominator: 3×3=93 \times 3 = 9.
The expression is now 189\frac{18}{9}.

Step 3: Simplify the fraction:

  • 189=2\frac{18}{9} = 2, after dividing both the numerator and the denominator by the GCD, which is 9.

Therefore, the solution to the problem is 2 2 .

Answer

2 2

Exercise #6

Solve the following exercise:

3623+255= \frac{\sqrt{36}}{\sqrt{2}\cdot\sqrt{3}}+\frac{\sqrt{25}}{5}=

Video Solution

Step-by-Step Solution

To solve this problem, let's simplify each term in the expression step-by-step:

  • Simplify the first term 3623 \frac{\sqrt{36}}{\sqrt{2}\cdot\sqrt{3}} :

    • 36=6 \sqrt{36} = 6 , as 36 is a perfect square.
    • Apply the property of square roots: 23=6 \sqrt{2} \cdot \sqrt{3} = \sqrt{6} .
    • Rewrite the expression: 66=66 \frac{6}{\sqrt{6}} = \frac{6}{\sqrt{6}} .
    • Using the square root quotient property: 66=626=6 \frac{6}{\sqrt{6}} = \sqrt{\frac{6^2}{6}} = \sqrt{6} .
  • Simplify the second term 255 \frac{\sqrt{25}}{5} :

    • 25=5 \sqrt{25} = 5 , as 25 is a perfect square.
    • The expression becomes 55=1 \frac{5}{5} = 1 .
  • Combine the simplified terms: 6+1 \sqrt{6} + 1

Therefore, the solution to the problem is 6+1 \sqrt{6} + 1 .

Answer

6+1 \sqrt{6}+1

Exercise #7

Solve the following exercise:

82166424= \frac{\sqrt{8}}{2\cdot\sqrt{16}}\cdot\frac{\sqrt{64}}{\sqrt{2}\cdot\sqrt{4}}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the expression step-by-step:

Step 1: Simplify each root expression:
- 8=42=42=22\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}
- 16=4\sqrt{16} = 4
- 64=8\sqrt{64} = 8
- 2=2\sqrt{2} = \sqrt{2}
- 4=2\sqrt{4} = 2

Step 2: Substitute back into the original expression:
8216=2224=24\frac{\sqrt{8}}{2 \cdot \sqrt{16}} = \frac{2\sqrt{2}}{2 \cdot 4} = \frac{\sqrt{2}}{4}


6424=822=822=42\frac{\sqrt{64}}{\sqrt{2} \cdot \sqrt{4}} = \frac{8}{\sqrt{2} \cdot 2} = \frac{8}{2\sqrt{2}} = \frac{4}{\sqrt{2}}

Step 3: Multiply the simplified fractions:
2442=2442=4242=1 \frac{\sqrt{2}}{4} \cdot \frac{4}{\sqrt{2}} = \frac{\sqrt{2} \cdot 4}{4 \cdot \sqrt{2}} = \frac{4\sqrt{2}}{4\sqrt{2}} = 1

Therefore, the solution to the problem is 1 1 .

Answer

1 1

Exercise #8

Solve the following exercise:

2864+44416= \frac{\sqrt{2}\cdot\sqrt{8}}{\sqrt{64}}+\frac{\sqrt{4}\cdot\sqrt{4}}{\sqrt{4}\cdot\sqrt{16}}=

Video Solution

Step-by-Step Solution

To solve the expression 2864+44416\frac{\sqrt{2}\cdot\sqrt{8}}{\sqrt{64}}+\frac{\sqrt{4}\cdot\sqrt{4}}{\sqrt{4}\cdot\sqrt{16}}, let's simplify each term step-by-step:

First, consider the term 2864\frac{\sqrt{2}\cdot\sqrt{8}}{\sqrt{64}}:

  • Simplify 28\sqrt{2} \cdot \sqrt{8} using the product property: 28=16\sqrt{2 \cdot 8} = \sqrt{16}.
  • We know that 16=4\sqrt{16} = 4.
  • 64=8\sqrt{64} = 8.
  • Thus, 1664\frac{\sqrt{16}}{\sqrt{64}} becomes 48=12\frac{4}{8} = \frac{1}{2}.

Next, consider the term 44416\frac{\sqrt{4}\cdot\sqrt{4}}{\sqrt{4}\cdot\sqrt{16}}:

  • Simplify 44\sqrt{4} \cdot \sqrt{4} using the product property: 44=16\sqrt{4 \cdot 4} = \sqrt{16}.
  • We know that 16=4\sqrt{16} = 4.
  • Simplify the denominator 416\sqrt{4} \cdot \sqrt{16} using the product property: 416=64\sqrt{4 \cdot 16} = \sqrt{64}, which is 88.
  • Thus, 1664\frac{\sqrt{16}}{\sqrt{64}} becomes 48=12\frac{4}{8} = \frac{1}{2}.

Finally, add the simplified terms together:

12+12=1\frac{1}{2} + \frac{1}{2} = 1.

Therefore, the solution to the problem is 1 1 .

Answer

1 1

Exercise #9

Solve the following exercise:

494+936= \sqrt{\frac{49}{4}}+\sqrt{\frac{9}{36}}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll proceed with the following steps:

  • Step 1: Simplify 494\sqrt{\frac{49}{4}}.
  • Step 2: Simplify 936\sqrt{\frac{9}{36}}.
  • Step 3: Add the results obtained from Step 1 and Step 2.

Step 1: We use the square root of a quotient property ab=ab\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}. For 494\sqrt{\frac{49}{4}}:

494=494=72\sqrt{\frac{49}{4}} = \frac{\sqrt{49}}{\sqrt{4}} = \frac{7}{2}

Step 2: Similarly, apply the same property to 936\sqrt{\frac{9}{36}}:

936=936=36=12\sqrt{\frac{9}{36}} = \frac{\sqrt{9}}{\sqrt{36}} = \frac{3}{6} = \frac{1}{2}

Step 3: Add the two results obtained:

72+12=7+12=82=4\frac{7}{2} + \frac{1}{2} = \frac{7 + 1}{2} = \frac{8}{2} = 4

Therefore, the solution to the problem is 44.

Answer

4

Exercise #10

Solve the following exercise:

24144+16= \frac{\sqrt{2}\cdot\sqrt{4}}{\sqrt{144}+\sqrt{16}}=

Video Solution

Step-by-Step Solution

To solve this problem, let's follow these detailed steps:

The given expression is:
24144+16 \frac{\sqrt{2}\cdot\sqrt{4}}{\sqrt{144}+\sqrt{16}}

Step 1: Simplify the numerator.

In the numerator, we have 24\sqrt{2} \cdot \sqrt{4}. Using the property of square roots, ab=ab\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}, we can write:

  • 24=24=8\sqrt{2} \cdot \sqrt{4} = \sqrt{2 \cdot 4} = \sqrt{8}

We can simplify 8\sqrt{8} further:

  • 8=42=42=22\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}

Step 2: Simplify the denominator.

In the denominator, we have 144+16\sqrt{144} + \sqrt{16}. Let's compute each square root:

  • 144=12\sqrt{144} = 12 because 122=14412^2 = 144
  • 16=4\sqrt{16} = 4 because 42=164^2 = 16

Thus, the denominator becomes:

  • 12+4=1612 + 4 = 16

Step 3: Form the fraction and simplify it.

Replacing the simplified numerator and denominator, the expression becomes:

  • 2216\frac{2\sqrt{2}}{16}

Simplifying the fraction, divide both terms in the fraction by 2:

  • 2216=28\frac{2\sqrt{2}}{16} = \frac{\sqrt{2}}{8}

Therefore, the solution to the problem is:

28 \frac{\sqrt{2}}{8}

Answer

28 \frac{\sqrt{2}}{8}

Exercise #11

Solve the following exercise:

32392= \sqrt{\frac{3}{2}}\cdot\sqrt{3}\cdot\sqrt{\frac{9}{2}}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Identify and combine the square roots into a single square root.
  • Simplify the expression logically inside the square root.
  • Resolve the final numerical value.

Now, let's work through each step:

Step 1: Convert the expression:

32392=32392\sqrt{\frac{3}{2}} \cdot \sqrt{3} \cdot \sqrt{\frac{9}{2}} = \sqrt{\frac{3}{2} \cdot 3 \cdot \frac{9}{2}}

This results in a single square root.

Step 2: Simplify inside the square root:

32392=33922=814\frac{3}{2} \cdot 3 \cdot \frac{9}{2} = \frac{3 \cdot 3 \cdot 9}{2 \cdot 2} = \frac{81}{4}

Step 3: Calculate the square root:

  • The square root of 814\frac{81}{4} can be found by separately taking square roots of the numerator and the denominator:
  • 814=814=92\sqrt{\frac{81}{4}} = \frac{\sqrt{81}}{\sqrt{4}} = \frac{9}{2}

Thus, combining all parts logically, we resolve the expression:

92=412\frac{9}{2} = 4\frac{1}{2}

Therefore, the solution to the problem is 412\boxed{4\frac{1}{2}}.

Answer

412 4\frac{1}{2}

Exercise #12

Solve the following exercise:

42+63= \sqrt{\frac{4}{2}}+\sqrt{\frac{6}{3}}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll eliminate fractions under the square roots by simplifying directly:

  • Step 1: Simplify each fraction inside the square roots:
    42=2 \frac{4}{2} = 2 and 63=2 \frac{6}{3} = 2 .
  • Step 2: Apply the square root to each simplified fraction:
    42=2\sqrt{\frac{4}{2}} = \sqrt{2} and 63=2\sqrt{\frac{6}{3}} = \sqrt{2}.
  • Step 3: Add the results of the square roots:
    2+2=22\sqrt{2} + \sqrt{2} = 2\sqrt{2}.

Therefore, the solution to the problem is 222\sqrt{2}.

Answer

22 2\sqrt{2}