Algebraic fractions are fractions with variables.
Algebraic fractions are fractions with variables.
Select the field of application of the following fraction:
\( \frac{x}{16} \)
Observe, you can factorize every expression included in your fraction separately in any way you desire and, in the end, you will arrive at the factorized expression.
Let's see an example of factoring algebraic fractions:
As you can see, in this fraction only the numerator can be factored.
We will factor it and obtain:
Now, we can reduce in the following way and we will obtain:
Select the field of application of the following fraction:
Let's examine the given expression:
As we know, the only restriction that applies to division operation is division by 0, since no number can be divided into 0 parts, therefore, division by 0 is undefined.
Therefore, when we talk about a fraction, where the dividend (the number being divided) is in the numerator, and the divisor (the number we divide by) is in the denominator, the restriction applies only to the denominator, which must be different from 0,
However in the given expression:
the denominator is 16 and:
Therefore the fraction is well defined and thus the unknown, which is in the numerator, can take any value,
Meaning - the domain (definition range) of the given expression is:
all x
(This means that we can substitute any number for the unknown x and the expression will remain well defined),
Therefore the correct answer is answer B.
Select the domain of the following fraction:
The domain depends on the denominator and we can see that there is no variable in the denominator.
Therefore, the domain is all numbers.
All numbers
Select the the domain of the following fraction:
The domain of a fraction depends on the denominator.
Since you cannot divide by zero, the denominator of a fraction cannot equal zero.
Therefore, for the fraction , the domain is "All numbers except 0," since the denominator cannot equal zero.
In other words, the domain is:
All numbers except 0
Select the field of application of the following fraction:
Let's examine the given expression:
As we know, the only restriction that applies to division is division by 0, since no number can be divided into 0 parts, therefore, division by 0 is undefined.
Therefore, when we talk about a fraction, where the dividend (the number being divided) is in the numerator, and the divisor (the number we divide by) is in the denominator, the restriction applies only to the denominator, which must be different from 0,
In the given expression:
As stated, the restriction applies to the fraction's denominator only,
Therefore, in order for the given expression (the fraction - in this case) to be defined, we require that the expression in its denominator - does not equal zero, meaning we require that:
We will solve this inequality, which is a point inequality of first degree, in the same way we solve a first-degree equation, meaning - we isolate the variable on one side, by moving terms (and dividing both sides of the inequality by its coefficient if needed):
Therefore, the domain (definition domain) of the given expression is:
(This means that if we substitute for the variable x any number different fromthe expression will remain well-defined),
Therefore, the correct answer is answer D.
Note:
In a general way - solving an inequality of this form, meaning, a non-linear, but point inequality - that uses the sign and not the inequality signs: ,>,\hspace{2pt}<,\hspace{2pt}\geq,\hspace{2pt}\leq,\hspace{2pt} is identical in every aspect to an equation and therefore is solved in the same way and all rules used to solve an equation of any type are identical for it as well.
Select the field of application of the following fraction:
Let's examine the given expression:
As we know, the only restriction that applies to division is division by 0, since no number can be divided into 0 parts, therefore, division by 0 is undefined.
Therefore, when we talk about a fraction, where the dividend (the number being divided) is in the numerator, and the divisor (the number we divide by) is in the denominator, the restriction applies only to the denominator, which must be different from 0,
In the given expression:
As stated, the restriction applies to the fraction's denominator only,
Therefore, in order for the given expression (the fraction - in this case) to be defined, we require that the expression in its denominator - does not equal zero, meaning we require that:
We will solve this inequality, which is a point inequality of first degree, in the same way we solve a first-degree equation, meaning - we isolate the variable on one side, by moving terms (and dividing both sides of the inequality by its coefficient if needed):
Therefore, the domain (definition domain) of the given expression is:
(This means that if we substitute any number different from for x, the expression will remain well-defined),
Therefore, the correct answer is answer C.
Note:
In a general form - solving an inequality of this form, meaning, a non-graphical, but point inequality - that uses the sign and not the inequality signs: ,>,\hspace{2pt}<,\hspace{2pt}\geq,\hspace{2pt}\leq,\hspace{2pt} is identical in every way to an equation and therefore is solved in the same way and all rules used to solve an equation of any type are identical for it as well.
Select the domain of the following fraction:
\( \frac{8+x}{5} \)
Select the the domain of the following fraction:
\( \frac{6}{x} \)
Select the field of application of the following fraction:
\( \frac{3}{x+2} \)