Factoring Algebraic Fractions

🏆Practice factorization and algebraic fractions

Algebraic fractions are fractions with variables.

Ways to factor algebraic fractions:

  1. We will find the most appropriate common factor to extract.
  2. If we do not see a common factor that we can extract, we will move on to factorization with formulas for abbreviated multiplication as we have studied.
  3. If the formulas for abbreviated multiplication cannot be used, we will proceed to factorize with trinomials.
  4. We will reduce according to the rules of reduction (we can only reduce when there is multiplication between the terms unless they are within parentheses, in which case, we will consider them independent terms).
Start practice

Test yourself on factorization and algebraic fractions!

einstein

Select the field of application of the following fraction:

\( \frac{7}{13+x} \)

Practice more now

Observe, you can factorize every expression included in your fraction separately in any way you desire and, in the end, you will arrive at the factorized expression.

Let's see an example of factoring algebraic fractions:
x2+7x+12x+3=\frac{x^2+7x+12}{x+3}=

As you can see, in this fraction only the numerator can be factored.
We will factor it and obtain:
(x+4)(x+3)(x+3)=\frac{(x+4)(x+3)}{(x+3)}=
Now, we can reduce in the following way and we will obtain:

Factorization of algebraic fractions


x+4x+4


Examples and exercises with solutions on factoring algebraic fractions

Exercise #1

Select the field of application of the following fraction:

713+x \frac{7}{13+x}

Video Solution

Step-by-Step Solution

Let's examine the given expression:

713+x \frac{7}{13+x}

As we know, the only restriction that applies to division is division by 0, since no number can be divided into 0 parts, therefore, division by 0 is undefined.

Therefore, when we talk about a fraction, where the dividend (the number being divided) is in the numerator, and the divisor (the number we divide by) is in the denominator, the restriction applies only to the denominator, which must be different from 0,

In the given expression:

713+x \frac{7}{13+x}

As stated, the restriction applies to the fraction's denominator only,

Therefore, in order for the given expression (the fraction - in this case) to be defined, we require that the expression in its denominator - does not equal zero, meaning we require that:

13+x≠0 13+x\neq0

We will solve this inequality, which is a point inequality of first degree, in the same way we solve a first-degree equation, meaning - we isolate the variable on one side, by moving terms (and dividing both sides of the inequality by its coefficient if needed):

13+x≠0x≠−13 13+x\neq0 \\ \boxed{x\neq -13}

Therefore, the domain (definition domain) of the given expression is:

x≠−13 x\neq -13

(This means that if we substitute any number different from (−13) (-13) for the variable x, the expression will remain well-defined),

Therefore, the correct answer is answer D.

Note:

In a general way - solving an inequality of this form, meaning, a non-linear, but point inequality - that uses the ≠ \neq sign and not the inequality signs: ,>,\hspace{2pt}<,\hspace{2pt}\geq,\hspace{2pt}\leq,\hspace{2pt} is identical in every way to an equation and therefore is solved in the same way and all rules used to solve an equation of any type are identical for it as well.

Answer

x≠−13 x\neq-13

Exercise #2

Select the field of application of the following fraction:

8−2+x \frac{8}{-2+x}

Video Solution

Step-by-Step Solution

Let's examine the given expression:

8−2+x \frac{8}{-2+x}

As we know, the only restriction that applies to division is division by 0, since no number can be divided into 0 parts, therefore, division by 0 is undefined.

Therefore, when we talk about a fraction, where the dividend (the number being divided) is in the numerator, and the divisor (the number we divide by) is in the denominator, the restriction applies only to the denominator, which must be different from 0,

In the given expression:

8−2+x \frac{8}{-2+x}

As stated, the restriction applies to the fraction's denominator only,

Therefore, in order for the given expression (the fraction - in this case) to be defined, we require that the expression in its denominator - does not equal zero, meaning we require that:

−2+x≠0 -2+x\neq0

We will solve this inequality, which is a point inequality of first degree, in the same way we solve a first-degree equation, meaning - we isolate the variable on one side, by moving terms (and dividing both sides of the inequality by its coefficient if needed):

−2+x≠0x≠2 -2+x\neq0 \\ \boxed{x\neq 2}

Therefore, the domain (definition domain) of the given expression is:

x≠2 x\neq 2

(This means that if we substitute any number different from 2 2 for x, the expression will remain well-defined),

Therefore, the correct answer is answer C.

Note:

In a general form - solving an inequality of this form, meaning, a non-graphical, but point inequality - that uses the ≠ \neq sign and not the inequality signs: ,>,\hspace{2pt}<,\hspace{2pt}\geq,\hspace{2pt}\leq,\hspace{2pt} is identical in every way to an equation and therefore is solved in the same way and all rules used to solve an equation of any type are identical for it as well.

Answer

x≠2 x\neq2

Exercise #3

Determine if the simplification below is correct:

6⋅36⋅3=1 \frac{6\cdot3}{6\cdot3}=1

Video Solution

Step-by-Step Solution

We simplify the expression on the left side of the approximate equality:

6Ìžâ‹…3Ìž6Ìžâ‹…3Ìž=?1↓1=!1 \frac{\textcolor{red}{\not{6}}\cdot\textcolor{blue}{\not{3}}}{\textcolor{red}{\not{6}}\cdot\textcolor{blue}{\not{3}}}\stackrel{?}{= }1\\ \downarrow\\ 1\stackrel{!}{= }1 therefore, the described simplification is correct.

Therefore, the correct answer is A.

Answer

Correct

Exercise #4

Determine if the simplification below is correct:

5⋅88⋅3=53 \frac{5\cdot8}{8\cdot3}=\frac{5}{3}

Video Solution

Step-by-Step Solution

Let's consider the fraction and break it down into two multiplication exercises:

88×53 \frac{8}{8}\times\frac{5}{3}

We simplify:

1×53=53 1\times\frac{5}{3}=\frac{5}{3}

Answer

Correct

Exercise #5

Determine if the simplification below is correct:

4⋅84=18 \frac{4\cdot8}{4}=\frac{1}{8}

Video Solution

Step-by-Step Solution

We will divide the fraction exercise into two multiplication exercises:

44×81= \frac{4}{4}\times\frac{8}{1}=

We simplify:

1×81=8 1\times\frac{8}{1}=8

Therefore, the described simplification is false.

Answer

Incorrect

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice