Addition and Subtraction of Algebraic Fractions

πŸ†Practice factorization and algebraic fractions

The key to adding or subtracting algebraic fractions is to make all denominators equal, that is, to find the common denominator.
To do this, we will need to factorize according to the different methods we have learned.

Action steps:

  1. We will factorize all the denominators we have.
  2. We will note the common denominator and, in this way, we will know how to meticulously carry out the third step.
  3. We will multiply each of the numerators by the same number that we need to multiply its denominator in order to reach the common denominator.
  4. We will write the exercise with a single denominator, the common denominator, and among the numerators, we will keep the same mathematical operations that were in the original exercise.
  5. After opening the parentheses, it may happen that we encounter another expression that needs to be factorized. We will factorize it and see if we can simplify it.
  6. We will obtain a common fraction and solve it.
Start practice

Test yourself on factorization and algebraic fractions!

einstein

Complete the corresponding expression for the denominator

\( \frac{12ab}{?}=1 \)

Practice more now

Example of addition and subtraction of algebraic fractions:
1x2βˆ’9+1x2βˆ’6x+9=\frac{1}{x^2-9}+\frac{1}{x^2-6x+9}=

Let's factorize all the denominators we have:
1(xβˆ’3)(x+3)+1(xβˆ’3)2\frac{1}{(x-3)(x+3)}+\frac{1}{(x-3)^2}

Let's note the common denominator:
(x+3)(xβˆ’3)2(x+3) (x-3)^2
Multiply each numerator by the necessary number so that its denominator reaches the common denominator, write the exercise with a single denominator and we will have:
xβˆ’3+x+3(x+3)(xβˆ’3)2\frac{x-3+x+3}{(x+3)(x-3)^2}
Place the elements in the numerator and it will give us:
2x(x+3)(xβˆ’3)2\frac{2x}{(x+3)(x-3)^2}
This is the final result.


Examples and exercises with solutions for addition and subtraction of algebraic fractions

Exercise #1

Complete the corresponding expression for the denominator

12ab?=1 \frac{12ab}{?}=1

Video Solution

Step-by-Step Solution

Let's examine the problem:

12ab?=1 \frac{12ab}{?}=1 Now let's think logically, and remember the known fact that dividing any number by itself always yields the result 1,

Therefore, in order to get the result 1 from dividing two numbers, the only way is to divide the number by itself, meaning-

The missing expression in the denominator of the fraction on the left side is the complete expression that appears in the numerator of the same fraction:

12ab 12ab .

Therefore- the correct answer is answer D.

Answer

12ab 12ab

Exercise #2

Complete the corresponding expression for the denominator

16ab?=2b \frac{16ab}{?}=2b

Video Solution

Step-by-Step Solution

Let's examine the problem, first we'll write the expression on the right side as a fraction (using the fact that dividing a number by 1 does not change its value):

16ab?=2b↓16ab?=2b1 \frac{16ab}{?}=2b \\ \downarrow\\ \frac{16ab}{?}=\frac{2b}{1}

Now let's think logically, and remember the fraction reduction operation,

For the fraction on the left side to be reducible, we want all the terms in its denominator to have a common factor, additionally, we want to reduce the number 16 to get the number 2, and reduce the term a a from the fraction's denominator since in the expression on the right side it does not appear, therefore we will choose the expression:

8a 8a

because:

16=8β‹…2 16=8\cdot 2

Let's verify that with this choice we indeed get the expression on the right side:

16ab?=2b1↓1ΜΈ6aΜΈb8ΜΈaΜΈ=?2b1↓2b1=!2b1 \frac{16ab}{?}=\frac{2b}{1} \\ \downarrow\\ \frac{\not{16}\not{a}b}{\textcolor{red}{\not{8}\not{a}}}\stackrel{?}{= }\frac{2b}{1} \\ \downarrow\\ \boxed{\frac{2b}{1}\stackrel{!}{= }\frac{2b}{1} }

therefore this choice is indeed correct.

In other words - the correct answer is answer B.

Answer

8a 8a

Exercise #3

Complete the corresponding expression for the denominator

16ab?=8a \frac{16ab}{?}=8a

Video Solution

Step-by-Step Solution

Using the formula:

xy=zw→x⋅y=z⋅y \frac{x}{y}=\frac{z}{w}\xrightarrow{}x\cdot y=z\cdot y

We first convert the 8 into a fraction, and multiply

16ab?=81 \frac{16ab}{?}=\frac{8}{1}

16abΓ—1=8a 16ab\times1=8a

16ab=8a 16ab=8a

We then divide both sides by 8a:

16ab8a=8a8a \frac{16ab}{8a}=\frac{8a}{8a}

2b 2b

Answer

2b 2b

Exercise #4

Complete the corresponding expression for the denominator

19ab?=a \frac{19ab}{?}=a

Video Solution

Step-by-Step Solution

Let's examine the problem, first we'll write down the expression on the right side as a fraction (using the fact that dividing a number by 1 doesn't change its value):

19ab?=a↓19ab?=a1 \frac{19ab}{?}=a \\ \downarrow\\ \frac{19ab}{?}=\frac{a}{1}
Now let's think logically, and remember the fraction reduction operation,

For the fraction on the left side to be reducible, we want all the terms in its denominator to have a common factor, additionally, we want to reduce the number 19 to get the number 1 and also reduce the term b b from the fraction's numerator since in the expression on the right side it doesn't appear, therefore we'll choose the expression:

19b 19b

Let's verify that with this choice we indeed get the expression on the right side:

19ab?=a1↓1ΜΈ9abΜΈ1ΜΈ9bΜΈ=?a1↓a1=!a1 \frac{19ab}{?}=\frac{a}{1} \\ \downarrow\\ \frac{\not{19}a\not{b}}{\textcolor{red}{\not{19}\not{b}}}\stackrel{?}{= }\frac{a}{1} \\ \downarrow\\ \boxed{\frac{a}{1}\stackrel{!}{= }\frac{a}{1} }

therefore this choice is indeed correct.

In other words - the correct answer is answer D.

Answer

19b 19b

Exercise #5

Complete the corresponding expression for the denominator

27ab?=3ab \frac{27ab}{\text{?}}=3ab

Video Solution

Step-by-Step Solution

Let's examine the problem, first we'll write the expression on the right side as a fraction (using the fact that dividing a number by 1 does not change its value):

27ab?=3ab↓27ab?=3ab1 \frac{27ab}{\text{?}}=3ab\\ \downarrow\\ \frac{27ab}{\text{?}}=\frac{3ab}{1}

Now let's think logically, and remember the fraction reduction operation,

Note that both in the numerator of the expression on the right side and in the numerator of the expression on the left side exists the expression ab ab , therefore in the expression we are looking for there are no variables (since we are not interested in reducing them from the expression in the numerator on the left side),

Next, we ask which number was chosen to put in the denominator of the expression on the left side so that its reduction with the number 27 yields the number 3, the answer to this is of course - the number 9,

Because:

27=9β‹…3 27=9\cdot 3

Let's verify that this choice indeed gives us the expression on the right side:

27ab?=3ab1↓2ΜΈ7ab9ΜΈ=?3ab1↓3ab1=!3ab1 \frac{27ab}{\text{?}}=\frac{3ab}{1} \\ \downarrow\\ \frac{\not{27}ab}{\textcolor{red}{\not{9}}}\stackrel{?}{= }\frac{3ab}{1} \\ \downarrow\\ \boxed{\frac{3ab}{1}\stackrel{!}{= }\frac{3ab}{1} }

Therefore this choice is indeed correct.

In other words - the correct answer is answer A.

Answer

9 9

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice