Simplifying Algebraic Fractions

๐Ÿ†Practice factorization and algebraic fractions

When we have equal numbers or with a common denominator in the numerator and in the denominator, in certain cases, we can simplify fractions.

Often we will encounter an algebraic fraction in which the numerator and the denominator can be simplified. For example, this equation:

412x4\over12x

is a fraction that we can simplify. The simplification of algebraic fractions is a very important operation that will save us a lot of time when solving exercises and will help us avoid mistakes. In this article, we will learn when it is and is not allowed to simplify the numerator and the denominator.

Remember! Simplification between numerator and denominator is possible when the terms involve multiplication operations and there are no additions or subtractions.

Start practice

Test yourself on factorization and algebraic fractions!

einstein

Complete the corresponding expression for the denominator

\( \frac{12ab}{?}=1 \)

Practice more now

Steps to Simplifying Fractions

First, observe the exercise shown below and try to understand it.
1) Try to take out the common factor.
2) Try to simplify using the formulas for short multiplication.
3) โ€ŽTry to break it down into factors with trinomials.

In our exercise, there is a number in the numerator. In the denominator, there is a multiplication of 12 12 by the unknown X X . Therefore, it can be simplified.
We will realize that both 4 4 and 12 12 can be divided by 4 4 , we will note it as follows:

412x=44โ‹…3x=13x\frac{4}{12x}=\frac{4}{4\cdot3x}=\frac{1}{3x}

An exercise of this type cannot be simplified because there is a sum:

412+x4\over12+x


Simplification of Algebraic Fractions

Many times we will come across an algebraic fraction in which the numerator and the denominator can be simplified. For example, this equation:

412x4\over12x

is a fraction that we can simplify. We will soon understand why and how it can be simplified. Simplifying algebraic fractions is a very important operation that will save us a lot of time when solving exercises and will help us avoid mistakes. In this article, we will learn when the numerator and the denominator can and cannot be simplified.

Remember! Simplification between numerator and denominator is possible when the terms involve multiplication operations and there are no additions or subtractions.

We will explain this with the help of some examples.


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Example 1 - Simplification of a fraction with one variable

412x4\over12x

There is a number in the numerator. In the denominator, there is a multiplication of 12 12 by the variable X X . Therefore, we can simplify. We will write it as follows:

In the denominator, there is a multiplication of 12 by the variable X


Example 2 - Simplification of a fraction with addition in the denominator

412+x4\over12+x

In this case, in the denominator there is a plus sign and not a multiplication. Therefore, it cannot be simplified.


Do you know what the answer is?

Example 3 - Simplification of a fraction with addition in the numerator

X+22XX+2\over2X

In this case, simplification is also not allowed since there is a sum in the numerator.


Example 4 - Simplifying a fraction with 2 variables

3X11XY3X\over11XY
In this case, there are only multiplications between the terms of the numerator and those of the denominator, so they can be simplified. We will simplify in X X .

We will simplify in X


Check your understanding

Example 5 - Simplification of fractions with variables and parentheses

3X(X+2)X+23X(X+2)\over X+2

In this case, we can also simplify since the expression (x+2) (x+2) is entirely multiplied by the other elements of the numerator. Therefore, we can consider the numerator as if it only included multiplication operations between the terms.

We can simplify both the numerator and the denominator by the expression (x+2) (x+2) .

We can simplify both the numerator and the denominator by the expression (x+2)

Example 6 - Factoring out the common factor before simplifying the numerator and the denominator

3x+6xy12x\frac {3x+6xy}{12x}

We see that there is a sum in the numerator and, consequently, at first glance, we might think that we cannot simplify the numerator and denominator. This is not the case, as we can extract the common factor from the numerator, as we have learned in previous classes, and then, we can simplify.

Let's extract the common factor from the numerator:

3x+6xy12x=3xร—(1+2y)12x\frac {3x+6xy}{12x}=\frac {3xร—(1+2y)}{12x}
Now we have multiplications between the terms of the numerator and between those of the denominator and, therefore, simplification can be applied.

Extraction of common factor prior to simplification of the numerator and denominator

We will not be able to simplify the last fraction we obtained since now we have a sum in the numerator and not only multiplication.


Now we will see some examples of equations with fractions that can be simplified.


Do you think you will be able to solve it?

Example 7 - Denominator different from 0

2x2+6x5(x+3)=1\frac {2x^2+6x}{5(x+3)}=1


First of all, let's remember that we must write down the solution set of the exercise. In the previous examples, we were not asked to solve the exercises, therefore, we have not mentioned the solution set.ย 

We must verify that the denominator is different from zero, that is,

5(x+3)โ‰ 05(x+3)โ‰  0

We will divide both sides of the equation by 55 to get rid of it:

/:5/:5,5(x+3)โ‰ 05(x+3)โ‰  0

x+3โ‰ 0x+3โ‰  0

xโ‰ โˆ’3x โ‰  -3

Which means that our solution set isย xโ‰ โˆ’3x โ‰  -3

Now let's return to the solution of the exercise. We will see that we can extract the common factor from the numerator of the left side of the equation. We will obtain:

2x(x=3)5(x+3)=1\frac {2x(x=3)}{5(x+3)}=1

We will realize that we only have multiplication operations between the terms of the numerator and the denominator, therefore, we can apply simplification.
โ€ŽWe will obtain:

apply simplification

2x5=1\frac {2x}{5}=1

2x=52x=5

x=52x=\frac {5}{2}

Our solution set isย xโ‰ โˆ’3x โ‰  -3

So, the result we obtained is included in the solution set.
At this stage, it is advisable to check the result by placing it in the original exercise. Try it!


Example 8 - Denominator different from 0

x2โˆ’3xโˆ’(x+15)=2x+3\frac {x^2-3x}{-(x+15)}=2x+3

First, let's note what the solution set is. We are interested in verifying that the denominator does not equal zero

โˆ’5x+15โ‰ 0-5x+15 โ‰  0

5xโ‰ 155x โ‰  15

xโ‰ 3x โ‰  3

That is, our solution set is xโ‰ 3x โ‰  3

Now let's return to the solution of the exercise. Let's extract the common factor from the numerator and the denominator of the left side of the equation:

x(xโˆ’3)โˆ’5(xโˆ’3)=2x+3\frac {x(x-3)}{-5(x-3)}=2x+3

Let's simplify the numerator and denominator

/โˆ—โˆ’5/*-5,xโˆ’5=2x+3\frac{x}{-5}=2x+3

x=โˆ’10xโˆ’15x=-10x-15

11x=โˆ’1511x=-15

x=โˆ’1511x=- \frac{15}{11}
Remember that our solution set is xโ‰ 3x โ‰  3

That is, the result obtained matches. At this stage, it is advisable to check our answer by placing it in the original exercise. Try it!


Examples and exercises with solutions for simplifying algebraic fractions

Exercise #1

Complete the corresponding expression for the denominator

12ab?=1 \frac{12ab}{?}=1

Video Solution

Step-by-Step Solution

Let's examine the problem:

12ab?=1 \frac{12ab}{?}=1 Now let's think logically, and remember the known fact that dividing any number by itself always yields the result 1,

Therefore, in order to get the result 1 from dividing two numbers, the only way is to divide the number by itself, meaning-

The missing expression in the denominator of the fraction on the left side is the complete expression that appears in the numerator of the same fraction:

12ab 12ab .

Therefore- the correct answer is answer D.

Answer

12ab 12ab

Exercise #2

Complete the corresponding expression for the denominator

16ab?=2b \frac{16ab}{?}=2b

Video Solution

Step-by-Step Solution

Let's examine the problem, first we'll write the expression on the right side as a fraction (using the fact that dividing a number by 1 does not change its value):

16ab?=2bโ†“16ab?=2b1 \frac{16ab}{?}=2b \\ \downarrow\\ \frac{16ab}{?}=\frac{2b}{1}

Now let's think logically, and remember the fraction reduction operation,

For the fraction on the left side to be reducible, we want all the terms in its denominator to have a common factor, additionally, we want to reduce the number 16 to get the number 2, and reduce the term a a from the fraction's denominator since in the expression on the right side it does not appear, therefore we will choose the expression:

8a 8a

because:

16=8โ‹…2 16=8\cdot 2

Let's verify that with this choice we indeed get the expression on the right side:

16ab?=2b1โ†“1ฬธ6aฬธb8ฬธaฬธ=?2b1โ†“2b1=!2b1 \frac{16ab}{?}=\frac{2b}{1} \\ \downarrow\\ \frac{\not{16}\not{a}b}{\textcolor{red}{\not{8}\not{a}}}\stackrel{?}{= }\frac{2b}{1} \\ \downarrow\\ \boxed{\frac{2b}{1}\stackrel{!}{= }\frac{2b}{1} }

therefore this choice is indeed correct.

In other words - the correct answer is answer B.

Answer

8a 8a

Exercise #3

Complete the corresponding expression for the denominator

16ab?=8a \frac{16ab}{?}=8a

Video Solution

Step-by-Step Solution

Using the formula:

xy=zwโ†’xโ‹…y=zโ‹…y \frac{x}{y}=\frac{z}{w}\xrightarrow{}x\cdot y=z\cdot y

We first convert the 8 into a fraction, and multiply

16ab?=81 \frac{16ab}{?}=\frac{8}{1}

16abร—1=8a 16ab\times1=8a

16ab=8a 16ab=8a

We then divide both sides by 8a:

16ab8a=8a8a \frac{16ab}{8a}=\frac{8a}{8a}

2b 2b

Answer

2b 2b

Exercise #4

Complete the corresponding expression for the denominator

19ab?=a \frac{19ab}{?}=a

Video Solution

Step-by-Step Solution

Let's examine the problem, first we'll write down the expression on the right side as a fraction (using the fact that dividing a number by 1 doesn't change its value):

19ab?=aโ†“19ab?=a1 \frac{19ab}{?}=a \\ \downarrow\\ \frac{19ab}{?}=\frac{a}{1}
Now let's think logically, and remember the fraction reduction operation,

For the fraction on the left side to be reducible, we want all the terms in its denominator to have a common factor, additionally, we want to reduce the number 19 to get the number 1 and also reduce the term b b from the fraction's numerator since in the expression on the right side it doesn't appear, therefore we'll choose the expression:

19b 19b

Let's verify that with this choice we indeed get the expression on the right side:

19ab?=a1โ†“1ฬธ9abฬธ1ฬธ9bฬธ=?a1โ†“a1=!a1 \frac{19ab}{?}=\frac{a}{1} \\ \downarrow\\ \frac{\not{19}a\not{b}}{\textcolor{red}{\not{19}\not{b}}}\stackrel{?}{= }\frac{a}{1} \\ \downarrow\\ \boxed{\frac{a}{1}\stackrel{!}{= }\frac{a}{1} }

therefore this choice is indeed correct.

In other words - the correct answer is answer D.

Answer

19b 19b

Exercise #5

Complete the corresponding expression for the denominator

27ab?=3ab \frac{27ab}{\text{?}}=3ab

Video Solution

Step-by-Step Solution

Let's examine the problem, first we'll write the expression on the right side as a fraction (using the fact that dividing a number by 1 does not change its value):

27ab?=3abโ†“27ab?=3ab1 \frac{27ab}{\text{?}}=3ab\\ \downarrow\\ \frac{27ab}{\text{?}}=\frac{3ab}{1}

Now let's think logically, and remember the fraction reduction operation,

Note that both in the numerator of the expression on the right side and in the numerator of the expression on the left side exists the expression ab ab , therefore in the expression we are looking for there are no variables (since we are not interested in reducing them from the expression in the numerator on the left side),

Next, we ask which number was chosen to put in the denominator of the expression on the left side so that its reduction with the number 27 yields the number 3, the answer to this is of course - the number 9,

Because:

27=9โ‹…3 27=9\cdot 3

Let's verify that this choice indeed gives us the expression on the right side:

27ab?=3ab1โ†“2ฬธ7ab9ฬธ=?3ab1โ†“3ab1=!3ab1 \frac{27ab}{\text{?}}=\frac{3ab}{1} \\ \downarrow\\ \frac{\not{27}ab}{\textcolor{red}{\not{9}}}\stackrel{?}{= }\frac{3ab}{1} \\ \downarrow\\ \boxed{\frac{3ab}{1}\stackrel{!}{= }\frac{3ab}{1} }

Therefore this choice is indeed correct.

In other words - the correct answer is answer A.

Answer

9 9

Test your knowledge
Start practice