Examples with solutions for Sum and Difference of Angles: Angle bisector

Exercise #1

BO bisects ABD ∢ABD .

ABD=85 ∢\text{ABD}=85

Calculate the size of

ABO. \sphericalangle ABO\text{.} 85°85°85°AAACCCBBBOOODDD

Video Solution

Answer

42.5

Exercise #2

ABD=15 ∢\text{ABD}=15

BD bisects the angle.

Calculate the size of ABC ∢\text{ABC} .

AAABBBCCCDDD15

Video Solution

Answer

30

Exercise #3

BE bisects FBD ∢\text{FBD} .

FBE=25 ∢\text{FBE}=25

Calculate the size of EBD ∢\text{EBD} .

AAACCCBBBFFFEEEDDD25

Video Solution

Answer

25

Exercise #4

DBC=90° ∢DBC=90°

BE cross DBA ∢\text{DBA}

Find the value α \alpha

AAABBBCCCDDDEEEα

Video Solution

Answer

45

Exercise #5

ABD=90 ∢\text{ABD}=90

CB bisects ABD \sphericalangle\text{ABD} .

CBD=α \sphericalangle\text{CBD}=\alpha

Calculate the size of ABC ∢ABC .

AAABBBDDDCCCα

Video Solution

Answer

45

Exercise #6

BD bisects ABC ∢\text{ABC} .

EBC=α ∢EBC=\alpha

DBE=30 ∢DBE=30

Calculate the size of ABD ∢\text{ABD} .

αααAAABBBCCCDDDEEE30

Video Solution

Answer

α+30 \alpha+30

Exercise #7

BD bisects ABC ∢\text{ABC} .

BE bisectsABD ∢\text{ABD} .

ABC=50 ∢\text{ABC}=50

Calculate the size of ABE ∢\text{ABE} .

AAABBBCCCDDDEEE50°

Video Solution

Answer

12.5

Exercise #8

OC bisects DOB ∢\text{DOB} .

KOD=2α ∢KOD=2\alpha

DOC=α ∢DOC=\alpha

KOB=68 ∢KOB=68

Calculate the size of angle DOC ∢\text{DOC} (a a ).

αααOOOKKKDDDCCCBBB68

Video Solution

Answer

17

Exercise #9

AFB=60 ∢\text{AFB}=60

AFE=120 ∢\text{AFE}=120

EFD=80 ∢EFD=80

FC bisects DFB ∢DFB .

Calculate the size of angle DFC ∢\text{DFC}

EEEBBBAAACCCDDD6012080F

Video Solution

Answer

50