Examples with solutions for Area of a Rectangle: Using Pythagoras' theorem

Exercise #1

The rectangle ABCD is shown below.

BD=25,BC=7 BD=25,BC=7

Calculate the area of the rectangle.

AAABBBCCCDDD725

Video Solution

Step-by-Step Solution

We will use the Pythagorean theorem in order to find the side DC:

(BC)2+(DC)2=(DB)2 (BC)^2+(DC)^2=(DB)^2

We begin by inserting the existing data into the theorem:

72+(DC)2=252 7^2+(DC)^2=25^2

49+DC2=625 49+DC^2=625

DC2=62549=576 DC^2=625-49=576

Finally we extract the root:

DC=576=24 DC=\sqrt{576}=24

Answer

168

Exercise #2

The trapezoid ABCD and the rectangle ABGE are shown in the figure below.

Given in cm:

AB = 5

BC = 5

GC = 3

Calculate the area of the rectangle ABGE.

555555333AAABBBCCCDDDEEEGGG

Video Solution

Step-by-Step Solution

Let's calculate side BG using the Pythagorean theorem:

BG2+GC2=BC2 BG^2+GC^2=BC^2

We'll substitute the known data:

BG2+32=52 BG^2+3^2=5^2

BG2+9=25 BG^2+9=25

BG2=16 BG^2=16

BG=16=4 BG=\sqrt{16}=4

Now we can calculate the area of rectangle ABGE since we have the length and width:

5×4=20 5\times4=20

Answer

20

Exercise #3

Shown below is the rectangle ABCD.

Given in cm:

AK = 5

DK = 4

The area of the rectangle is 24 cm².

Calculate the side AB.

S=24S=24S=24555444AAABBBCCCDDDKKK

Video Solution

Step-by-Step Solution

Let's look at triangle ADK to calculate side AD:

AD2+DK2=AK2 AD^2+DK^2=AK^2

Let's input the given data:

AD2+42=52 AD^2+4^2=5^2

AD2+16=25 AD^2+16=25

We'll move 16 to the other side and change the appropriate sign:

AD2=2516 AD^2=25-16

AD2=9 AD^2=9

We'll take the square root and get:

AD=3 AD=3

Since AD is a side of rectangle ABCD, we can calculate side AB as follows:

S=AB×AD S=AB\times AD

Let's input the given data:

24=3×AB 24=3\times AB

We'll divide both sides by 3:

AB=8 AB=8

Answer

8

Exercise #4

Shown below is a rectangle and an isosceles right triangle.

777101010

What is the area of the rectangle?

Video Solution

Step-by-Step Solution

To find the missing side, we use the Pythagorean theorem in the upper triangle.

Since the triangle is isosceles, we know that the length of both sides is 7.

Therefore, we apply PythagorasA2+B2=C2 A^2+B^2=C^2 72+72=49+49=98 7^2+7^2=49+49=98

Therefore, the area of the missing side is:98 \sqrt{98}

The area of a rectangle is the multiplication of the sides, therefore:

98×10=98.9999 \sqrt{98}\times10=98.99\approx99

Answer

99 \approx99

Exercise #5

Given the rectangle ABCD

AB=X

The ratio between AB and BC is x2 \sqrt{\frac{x}{2}}

We mark the length of the diagonal A the rectangle in m

Check the correct argument:

XXXmmmAAABBBCCCDDD

Video Solution

Step-by-Step Solution

Given that:

ABBC=x2 \frac{AB}{BC}=\sqrt{\frac{x}{2}}

Given that AB equals X

We will substitute accordingly in the formula:

xBC=x2 \frac{x}{BC}=\frac{\sqrt{x}}{\sqrt{2}}

x2=BCx x\sqrt{2}=BC\sqrt{x}

x2x=BC \frac{x\sqrt{2}}{\sqrt{x}}=BC

x×x×2x=BC \frac{\sqrt{x}\times\sqrt{x}\times\sqrt{2}}{\sqrt{x}}=BC

x×2=BC \sqrt{x}\times\sqrt{2}=BC

Now let's focus on triangle ABC and use the Pythagorean theorem:

AB2+BC2=AC2 AB^2+BC^2=AC^2

Let's substitute the known values:

x2+(x×2)2=m2 x^2+(\sqrt{x}\times\sqrt{2})^2=m^2

x2+x×2=m2 x^2+x\times2=m^2

We'll add 1 to both sides:

x2+2x+1=m2+1 x^2+2x+1=m^2+1

(x+1)2=m2+1 (x+1)^2=m^2+1

Answer

m2+1=(x+1)2 m^2+1=(x+1)^2

Exercise #6

Given the rectangle ABCD

AB=X the ratio between AB and BC is equal tox2 \sqrt{\frac{x}{2}}

We mark the length of the diagonal A A with m m

Check the correct argument:

XXXmmmAAABBBCCCDDD

Video Solution

Step-by-Step Solution

Let's find side BC

Based on what we're given:

ABBC=xBC=x2 \frac{AB}{BC}=\frac{x}{BC}=\sqrt{\frac{x}{2}}

xBC=x2 \frac{x}{BC}=\frac{\sqrt{x}}{\sqrt{2}}

2x=xBC \sqrt{2}x=\sqrt{x}BC

Let's divide by square root x:

2×xx=BC \frac{\sqrt{2}\times x}{\sqrt{x}}=BC

2×x×xx=BC \frac{\sqrt{2}\times\sqrt{x}\times\sqrt{x}}{\sqrt{x}}=BC

Let's reduce the numerator and denominator by square root x:

2x=BC \sqrt{2}\sqrt{x}=BC

We'll use the Pythagorean theorem to calculate the area of triangle ABC:

AB2+BC2=AC2 AB^2+BC^2=AC^2

Let's substitute what we're given:

x2+(2x)2=m2 x^2+(\sqrt{2}\sqrt{x})^2=m^2

x2+2x=m2 x^2+2x=m^2

Answer

x2+2x=m2 x^2+2x=m^2