Triangle Congruence Proof: Comparing Triangles with 30° Angles and X+2 Side Length

Are the triangles in the drawing congruent?

303030303030X+2X+2X+23333332X+4

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Are the triangles in the drawing congruent?

303030303030X+2X+2X+23333332X+4

2

Step-by-step solution

In order for triangles to be congruent, one must demonstrate that the S.A.S theorem is satisfied

We have a common side whose length in both triangles is equal to 3.

Now let's examine the lengths of the other sides:

2X+4=X+2 2X+4=X+2

We proceed with the sections accordingly:24=2XX 2-4=2X-X

2=X -2=X

We place this value in the right triangle we should find the length of the side:2+2=0 -2+2=0

However since it is not possible for the length of a side to be equal to 0, the triangles are not congruent.

3

Final Answer

No

Practice Quiz

Test your knowledge with interactive questions

Look at the triangles in the diagram.

Which of the statements is true?

727272727272131313222131313222AAABBBCCCDDDEEEFFF

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Congruent Triangles questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations