Solve X²+10X+9=0: Complete Quadratic Equation Guide

Question

What is the value of X in the following equation?

X2+10X+9=0 X^2+10X+9=0

Video Solution

Solution Steps

00:00 Find X
00:03 Let's pay attention to the coefficients
00:14 We want to find 2 numbers whose sum equals B(10)
00:17 and their product equals C(9)
00:24 These are the matching numbers
00:28 Let's substitute these solutions in the multiplication equation
00:35 Let's find what makes each factor zero
00:44 And this is the solution to the question

Step-by-Step Solution

To answer the question, we'll need to recall the quadratic formula:

x=b±b24ac2a x = {-b \pm \sqrt{b^2-4ac} \over 2a}

 

Let's remember that:

a is the coefficient of X²

b is the coefficient of X

c is the free term

 

And if we look again at the formula given to us:

a=1

b=10

c=9

 

Let's substitute into the formula:

x=10±10241921 x = {-10 \pm \sqrt{10^2-4\cdot 1 \cdot 9} \over 2\cdot 1}

Let's start by solving what's under the square root:

x=10±100362 x = {-10 \pm \sqrt{100-36} \over 2}

x=10±642 x = {-10 \pm \sqrt{64} \over 2}

x=10±82 x = {-10 \pm 8 \over 2}

Now we'll solve twice, once with plus and once with minus

 

x=10+82=22=1 x = {-10 +8 \over 2}= {-2 \over 2} = -1

x=1082=182=9 x = {-10 -8 \over 2} = {-18 \over 2} =-9

And we can see that we got two solutions, X=-1 and X=-9

And that's the solution!

Answer

x1=1,x2=9 x_1=-1,x_2=-9