11(−3x+4)−7(6x−2)=3
To solve the linear equation 11(−3x+4)−7(6x−2)=3, follow these steps:
Begin by applying the distributive property to the expression on both sides:
- Distribute 11:
11(−3x+4)=11⋅(−3x)+11⋅4=−33x+44.
- Distribute −7:
−7(6x−2)=−7⋅6x+−7⋅(−2)=−42x+14.
Substitute these results back into the equation:
−33x+44−42x+14=3
Combine like terms:
(−33x−42x)+(44+14)=3
−75x+58=3
Isolate the term with x by subtracting 58 from both sides:
−75x=3−58
−75x=−55
Now, solve for x by dividing both sides by −75:
x=−75−55
Simplify the fraction by dividing both numerator and denominator by 5:
x=1511
Therefore, the solution to the equation is 1511.