Solve Expression: ((5×3)^4)^(-3) Using Power Rules

Question

Insert the corresponding expression:

((5×3)4)3= \left(\left(5\times3\right)^4\right)^{-3}=

Video Solution

Step-by-Step Solution

To solve the problem, let us simplify the expression ((5×3)4)3\left(\left(5\times3\right)^4\right)^{-3}.

First, recognize that the expression inside the parentheses, 5×35 \times 3, can be multiplied to give us 15. However, we'll focus on exponent rules directly.

  • Step 1: Apply the Power of a Power Rule.
    Using the formula (am)n=am×n(a^m)^n = a^{m \times n}, simplification gives: ((5×3)4)3=((5×3)4×3)=(5×3)12.\left(\left(5\times3\right)^4\right)^{-3} = \left( (5 \times 3)^{4 \times -3} \right) = \left(5\times3\right)^{-12}.
  • Step 2: Apply the Negative Exponent Rule.
    Using an=1ana^{-n} = \frac{1}{a^n}, the expression becomes: (5×3)12=1(5×3)12.\left(5\times3\right)^{-12} = \frac{1}{\left(5\times3\right)^{12}}.

Therefore, the solution to the given expression is 1(5×3)12\frac{1}{\left(5\times3\right)^{12}}.

Now, let's verify the answer with the choices provided:

  • Choice 1: 1(5×3)12\frac{1}{\left(5\times3\right)^{12}} - This matches our solution.
  • Choice 2: (5×3)12(5\times3)^{12} - Incorrect, doesn't account for the negative exponent.
  • Choice 3: 1(5×3)1\frac{1}{\left(5\times3\right)^{-1}} - Incorrect power and doesn't represent the full expression.
  • Choice 4: 1(5×3)1\frac{1}{\left(5\times3\right)^1} - Incorrect power and doesn't reflect the original problem.

Thus, the correct choice is Choice 1: 1(5×3)12\frac{1}{\left(5\times3\right)^{12}}.

Answer

1(5×3)12 \frac{1}{\left(5\times3\right)^{12}}