Solve (4x)^5)^3: Evaluating Nested Exponent Expression

Question

Insert the corresponding expression:

((4×x)5)3= \left(\left(4\times x\right)^5\right)^3=

Video Solution

Step-by-Step Solution

To solve this problem, we will apply the power of a power rule for exponents, which states that (am)n=am×n\left(a^m\right)^n = a^{m \times n}.

**Step-by-step Solution:**

  • Step 1: Identify the given information.

    • The expression is ((4×x)5)3\left(\left(4\times x\right)^5\right)^3.

    • The base is 4×x4\times x, the first exponent is 5, and the second exponent is 3.

  • Step 2: Apply the power of a power rule.

    • According to the rule: ((4×x)5)3=(4×x)5×3\left((4 \times x)^5\right)^3 = (4 \times x)^{5 \times 3}.

    • Multiply the exponents: 5×3=155 \times 3 = 15.

    • Thus, the expression simplifies to (4×x)15(4 \times x)^{15}.

Therefore, the simplified expression is (4×x)15(4 \times x)^{15}.

Choice Analysis:

  • The correct choice is:

    (4×x)5×3 \left(4\times x\right)^{5\times3}

    , which correctly applies the power of a power rule.

  • Incorrect choices:

    • : (4×x)5+3 (4\times x)^{5+3} – Incorrect, it adds exponents instead of multiplying.

    • : (4×x)53 (4\times x)^{\frac{5}{3}} – Incorrect, it uses division but should multiply exponents.

    • : (4×x)53 (4\times x)^{5-3} – Incorrect, it subtracts exponents instead of multiplying.

Answer

(4×x)5×3 \left(4\times x\right)^{5\times3}