Simplify ((ax)^7)^2: Nested Exponent Expression Solution

Question

Insert the corresponding expression:

((a×x)7)2= \left(\left(a\times x\right)^7\right)^2=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Identify the given information: We have the expression ((a×x)7)2(\left(a \times x\right)^7)^2.
  • Apply the appropriate formula: Use the "power of a power" rule for exponents.
  • Perform the necessary calculations: Simplify the expression using the rule.

Now, let's work through each step:
Step 1: The expression given is ((a×x)7)2(\left(a \times x\right)^7)^2.
Step 2: According to the power of a power rule, (bm)n=bm×n(b^m)^n = b^{m \times n}. Hence, ((a×x)7)2=((a×x)7×2)(\left(a \times x\right)^7)^2 = (\left(a \times x\right)^{7 \times 2}).
Step 3: Perform the multiplication in the exponent, which results in ((a×x)14)(\left(a \times x\right)^{14}).

Therefore, the expression ((a×x)7)2(\left(a \times x\right)^7)^2 simplifies to (a×x)14(a \times x)^{14}.

Checking against the answer choices:

  • Choice 1: (a×x)72 \left(a\times x\right)^{7-2} simplifies to (a×x)5 \left(a\times x\right)^5 . Incorrect.
  • Choice 2: (a×x)27 \left(a\times x\right)^{\frac{2}{7}} . Incorrect application of exponent rules.
  • Choice 3: (a×x)7+2=(a×x)9 \left(a\times x\right)^{7+2} = \left(a\times x\right)^9 . Incorrect.
  • Choice 4: (a×x)7×2=(a×x)14 \left(a\times x\right)^{7\times2} = \left(a\times x\right)^{14} . Correct.

Given all these considerations, the correct choice is Choice 4: (a×x)14 \left(a\times x\right)^{14} , which corresponds to the correct application of the "power of a power" rule.

Answer

(a×x)7×2 \left(a\times x\right)^{7\times2}