Solve: (√2·√8)/√64 + (√4·√4)/(√4·√16) Radical Expression

Question

Solve the following exercise:

2864+44416= \frac{\sqrt{2}\cdot\sqrt{8}}{\sqrt{64}}+\frac{\sqrt{4}\cdot\sqrt{4}}{\sqrt{4}\cdot\sqrt{16}}=

Video Solution

Solution Steps

00:00 Solve the following exercise
00:03 When multiplying the root of a number (A) by the root of another number (B)
00:07 The result equals the root of their multiplication (A times B)
00:10 Apply this formula to our exercise and calculate the multiplication
00:15 Simplify wherever possible
00:31 Break down 16 to 4 squared
00:35 Break down 64 to 8 squared
00:39 Break down 4 to 2 squared
00:42 Break down 16 to 4 squared
00:45 The square root of any number (A) squared cancels out the square
00:50 Apply this formula to our exercise and cancel out the squares:
01:05 Simplify wherever possible
01:11 This is the solution

Step-by-Step Solution

To solve the expression 2864+44416\frac{\sqrt{2}\cdot\sqrt{8}}{\sqrt{64}}+\frac{\sqrt{4}\cdot\sqrt{4}}{\sqrt{4}\cdot\sqrt{16}}, let's simplify each term step-by-step:

First, consider the term 2864\frac{\sqrt{2}\cdot\sqrt{8}}{\sqrt{64}}:

  • Simplify 28\sqrt{2} \cdot \sqrt{8} using the product property: 28=16\sqrt{2 \cdot 8} = \sqrt{16}.
  • We know that 16=4\sqrt{16} = 4.
  • 64=8\sqrt{64} = 8.
  • Thus, 1664\frac{\sqrt{16}}{\sqrt{64}} becomes 48=12\frac{4}{8} = \frac{1}{2}.

Next, consider the term 44416\frac{\sqrt{4}\cdot\sqrt{4}}{\sqrt{4}\cdot\sqrt{16}}:

  • Simplify 44\sqrt{4} \cdot \sqrt{4} using the product property: 44=16\sqrt{4 \cdot 4} = \sqrt{16}.
  • We know that 16=4\sqrt{16} = 4.
  • Simplify the denominator 416\sqrt{4} \cdot \sqrt{16} using the product property: 416=64\sqrt{4 \cdot 16} = \sqrt{64}, which is 88.
  • Thus, 1664\frac{\sqrt{16}}{\sqrt{64}} becomes 48=12\frac{4}{8} = \frac{1}{2}.

Finally, add the simplified terms together:

12+12=1\frac{1}{2} + \frac{1}{2} = 1.

Therefore, the solution to the problem is 1 1 .

Answer

1 1