Solve -(-2)^4+(-2)^2: Order of Operations with Negative Exponents

Question

(2)4+(2)2= -(-2)^4+(-2)^2=

Video Solution

Step-by-Step Solution

To solve this problem, let's evaluate the expression (2)4+(2)2-(-2)^4 + (-2)^2 step-by-step:

  • Step 1: Calculate (2)4(-2)^4.
    Since the exponent is even, (2)4=((2)×(2)×(2)×(2))(-2)^4 = ((-2) \times (-2) \times (-2) \times (-2)).
    Calculating more explicitly:
    (2)×(2)=4(-2) \times (-2) = 4,
    4×(2)=84 \times (-2) = -8,
    8×(2)=16-8 \times (-2) = 16.
    Thus, (2)4=16(-2)^4 = 16.

  • Step 2: Negate the result from step 1.
    (2)4=(16)=16-(-2)^4 = -(16) = -16.

  • Step 3: Calculate (2)2(-2)^2.
    Since the exponent is even, (2)2=(2)×(2)=4(-2)^2 = (-2) \times (-2) = 4.

  • Step 4: Add the results from step 2 and step 3.
    16+4=12-16 + 4 = -12.

Therefore, the final result is 12 \mathbf{-12} .

Answer

12 -12