Simplify the Expression: (a^20b/a^15b) × (a^3b/a^2b) Using Exponent Rules

Question

Simplify the following:

a20ba15b×a3ba2b= \frac{a^{20b}}{a^{15b}}\times\frac{a^{3b}}{a^{2b}}=

Video Solution

Solution Steps

00:00 Simplify the following problem
00:03 When dividing powers with equal bases
00:06 The power of the result equals the difference of exponents
00:11 We'll apply this formula to our exercise, and subtract the exponents
00:30 When multiplying powers with equal bases
00:35 The power of the result equals the sum of exponents
00:40 We'll apply this formula to our exercise, and add together the exponents
00:45 This is the solution

Step-by-Step Solution

Let's start with multiplying the fractions, remembering that multiplication of fractions is performed by multiplying numerator by numerator and denominator by denominator:

a20ba15ba3ba2b=a20ba3ba15ba2b \frac{a^{20b}}{a^{15b}}\cdot\frac{a^{3b}}{a^{2b}}=\frac{a^{20b}\cdot a^{3b}}{a^{15b}\cdot a^{2b}}

Next, we'll note that both in the numerator and denominator, multiplication occurs between terms with identical bases, so we'll use the power law for multiplying terms with identical bases:

cmcn=cm+n c^m\cdot c^n=c^{m+n}

We emphasize that this law can only be used when multiplication is performed between terms with identical bases.

From this point forward, we will no longer use the multiplication sign, but instead use the conventional notation where placing terms next to each other implies multiplication.
Let's return to the problem and apply the above power law separately to the fraction's numerator and denominator:

a20ba3ba15ba2b=a20b+3ba15b+2b=a23ba17b \frac{a^{20b}a^{3b}}{a^{15b}a^{2b}}=\frac{a^{20b+3b}}{a^{15b+2b}}=\frac{a^{23b}}{a^{17b}}

where in the final step we calculated the sum of the exponents in the numerator and denominator.

Now we notice that we need to perform division between two terms with identical bases, so we'll use the power law for dividing terms with identical bases:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n}

We emphasize that this law can only be used when division is performed between terms with identical bases.

Let's return to the problem and apply the above power law:

a23ba17b=a23b17b=a6b \frac{a^{23b}}{a^{17b}}=a^{23b-17b}=a^{6b}

where in the final step we calculated the subtraction between the exponents.

We have obtained the most simplified expression and therefore we are done.

Therefore, the correct answer is D.

Answer

a6b a^{6b}