Simplify (4×7)^(2x)/(4×7)^4: Exponential Expression with Variable Power

Question

Insert the corresponding expression:

(4×7)2x(4×7)4= \frac{\left(4\times7\right)^{2x}}{\left(4\times7\right)^4}=

Video Solution

Step-by-Step Solution

We start with the expression: (4×7)2x(4×7)4 \frac{\left(4\times7\right)^{2x}}{\left(4\times7\right)^4} .

According to the Power of a Quotient Rule for Exponents, which states that aman=amn \frac{a^m}{a^n} = a^{m-n} , we can simplify the expression by subtracting the exponents.

The base here is 4×7 4 \times 7 , and it is common in both the numerator and the denominator.

Thus, using the exponent rule, we have:

  • Exponent in the numerator: 2x 2x
  • Exponent in the denominator: 4 4

Now, apply the rule:

(4×7)2x(4×7)4=(4×7)2x4 \frac{\left(4\times7\right)^{2x}}{\left(4\times7\right)^4} = \left(4\times7\right)^{2x-4}

The solution to the question is: (4×7)2x4 \left(4\times7\right)^{2x-4} .

Answer

(4×7)2x4 \left(4\times7\right)^{2x-4}